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Abstract. Computer malwares (e.g., botnets, rootkits, spware) are one of the
most serious threats to all computers and networks. Most malwares conduct their
malicious actions via hijacking the control flow of the infected system or pro-
gram. Therefore, it is critically important to protect our mission critical systems
from malicious control flows.

Inspired by the self-nonself discrimination in natural immune system, this re-
search explores a new direction in building the artificial malware immune sys-
tems. Most existing models of self of the protected program or system are passive
reflection of the existing being (e.g., system call sequence) of the protected pro-
gram or system. Instead of passively reflecting the existing being of the protected
program, we actively assign a unique mark to the protected program or system.
Such a dynamically assigned unique mark forms dynamically assigned sense of
self of the protected program or system that enables us to effectively and effi-
ciently distinguish the unmarked nonself (e.g., malware actions) from marked self
with no false positive. Since our artificial malware immunization technique does
not require any specific knowledge of the malwares, it can be effective against
new and previously unknown malwares.

We have implemented a proof-of-concept prototype of our artificial malware im-
munization based on such dynamically assigned sense of self in Linux, and our
automatic malware immunization tool has successfully immunized real-world,
unpatched, vulnerable applications (e.g., Snort 2.6.1 with over 140,000 lines C
code) against otherwise working exploits. In addition, our artificial malware im-
munization is effective against return-to-libc attacks and recently discovered return-
oriented exploits. The overall run time performance overhead of our artificial
malware immunization prototype is no more than 4%.
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1 Introduction

Despite recent advances in malware defense, computer malware (e.g., virus, worm, bot-
nets, rootkits, trojans, spyware, keyloggers) continues to pose serious threats to the
trustworthiness of all computers and networks.
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Fig. 1. Self-nonself discrimination based on traditional sense of self vs the proposed dynamically
assigned sense of self

In addition to being more damaging, modern malware is becoming increasingly
stealthy and evasive to avoid detection. For example, Agobot, a major bot family with
thousands of variants in-the-wild, contains self protection code to periodically detect
and remove popular anti-malware processes and sniffers (e.g., tcpdump, ethereal) on the
infected hosts. Return-oriented programming [31] enables malware to use the trusted,
benign code (e.g., libc) to conduct all kinds of malware activities. Such a technique not
only enables malware activities without any code injection or calling any libc function,
but also raises the fundamental question on whether the trusted, benign code is free of
malware computation. All these have made people wonder whether we could possibly
win the battle on malware and what we can expect from malware detection.

On the other hand, our natural immune systems are very effective in protecting our
body from the intrusion by (almost endless) variations of pathogens. Our immunities
depend on the ability to distinguish our own cells (i.e., “self”’) from all others (i.e., “non-
self”) [9]. Such a self-nonself discrimination is so fundamental to our immunities that
immunology is widely regarded as “the science of self-nonself discrimination” [23].

Forrest et al. [15, 14] have pioneered in applying the idea of immunology to com-
puter security. If we consider the uninfected computer system as “self” and malwares
as “non-self”, protecting uninfected computer systems from invading malwares is very
similar to protecting our body from invading pathogens from the perspective of self-
nonself discrimination. Specifically, if we can effectively and efficiently distinguish the
actions of the uninfected computer system (self) from the actions of malwares (nonself),
we can build effective and efficient artificial malware immunization to “immunize” the
uninfected computer system from the malicious actions of malwares.

In this paper, we explore a new direction in building the artificial malware immu-
nization capabilities based on a new way to model and monitor the normal behavior (i.e.
self) of the protected program or system. As shown in Figure 1(a), most existing models
of self of the protected program or system [15, 32,29, 13, 18, 8] are passive reflection
of the existing being (e.g., system call sequence) of the protected program or system.
Instead of passively reflecting the existing being of the protected program, we actively
assign a unique mark to the protected program or system via program instrumentation
as shown in Figure 1(b). Such a program instrumentation “immunizes” the protected
program or system, and the dynamically assigned unique mark forms the dynamically



assigned sense of self of the instrumented program or system, which enables us to ef-
fectively and efficiently distinguish the unmarked nonself (e.g., malware actions) from
marked self with no false positive.

Based on the dynamically assigned sense of self, we have built a framework of
artificial malware immunization that has the following salient features:

— Transparent: Our artificial malware immunization is able to immunize user space
applications transparently without changing any source code of the applications to
be immunized.

Effective: Our artificial malware immunization is effective against various con-

trol flow hijacking attacks (e.g., buffer overflow, return-to-libc, return-oriented ex-

ploit [31]). Since our artificial malware immunization does not require any specific
knowledge of malwares, it can be effective against previous unknown malwares. In

addition, it is effective against malwares obfuscated by mimicry attack [33].

Virtually no false positive: In theory, our artificial malware immunization frame-

work will never falsely accuse any normal action of the immunized program or sys-

tem to be malware action. In practice, our implementation of the artificial malware
immunization achieves virutally no false positive in detecting the nonself malware
action.

Efficient: Our artificial malware immunization incurs neglectable run-time over-

head over the original program or system.

— New real-time malware forensics support: Our artificial malware immunization
is able to locate and identify the first and all shell commands and system calls issued
by the malware in real-time. This unique feature enables new malware forensics
capabilities (e.g., accurately locating the offending input by malware) that were not
possible in the past.

We have implemented a prototype of our artificial malware immunization in Linux.
Our automatic malware immunization tool has successfully instrumented the GNU stan-
dard C library (glibc 2.5 of about 1 million lines of C code) and immunized real-world,
unpatched, vulnerable applications (e.g., Snort 2.6.1 of over 140,000 lines of C code)
against otherwise working exploits. In addition, our artificial malware immunization is
effective against return-to-libc attacks and recently identified return-oriented exploits
[31]. Without special optimization effort, our automatic malware immunization proto-
type is able to immunize vulnerable applications with no more than 4% overall run-time
overhead.

The rest of the paper is organized as follows. In section 2, we present the design
and implementation of the artificial malware immunization. In section 3, we empiri-
cally evaluate the effectiveness and efficiency of our artificial malware immunization.
In section 4, we review related works. We conclude in section 5.

2 Design and Implementation
2.1 Goals and Assumptions
Inspired by the self-nonself discrimination in natural immune systems, we build an

artificial malware immunization framework based on dynamically assigned sense of
self. Instead of trying to detect statically if any particular object (e.g., program, file,



packet) contains any malware, the primary goal of our artificial malware immunization
is to prevent malwares from doing harm to the protected program or system at run-
time. Specifically, our artificial malware immunization aims to automatically immunize
otherwise vulnerable applications and systems (as shown in Figure 1(b)) such that (1)
it is capable of defending and detecting both control flow attacks and data flow attacks
[11]; (2) it has no false positive in detecting the malware; (3) it is more efficient in run-
time checking than current generation of models of self; (4) it enables new malware
forensics capabilities.

Here we assume that the program or system to be immunized is free of malware.
We build the artificial malware immunization upon the trust on the operating system
kernel, and we assume that there is no malware beneath the operating system kernel. In
other words, there is no lower layer malware (e.g., hardware based rootkit, VMBR).

In principle, we can immunize both the control flow and its data access via dynami-
cally assigned sense of self. Since most existing malware infection involves control flow
hijacking 3, we focus on immunizing the control flow of the vulnerable programs in this
paper. Since most real-world vulnerable applications are written in C, we focus on how
to immunize systems written in C and leave the immunization of programs written in
other (e.g., script) languages as a future work.

Ideally, we want to be able to mark each instruction of the program with dynami-
cally assigned sense of self so that we can detect the first instruction executed by the
malware (nonself). However, checking each instruction would incur prohibitively high
overhead. On the other hand, a compromised application could hardly do any harm
without using system calls (e.g., write) [15,24]. Therefore, we can prevent all appli-
cation level control flow hijaking malwares from doing any harm if we can detect and
block their first system call. For this reason, we choose to define the dynamically as-
signed sense of self of control flow at the granularity of system call.

Unlike previous models of self where the sense of self is based on system call se-
quence, our proposed dynamically assigned sense of self of control flow is essentially
a unique mark assigned to each system call. The unique mark assigned to each system
call provides another sense of self to the system call that is orthogonal to the system
call sequence based sense of self.

2.2 Overall Architecture of Artificial Malware Immunization

Our artificial malware immunization framework consists of two functional components:
1) the malware immunization tool that can transparently immunize user space programs
(e.g., applications, libraries) offline; and 2) the malware immunization infrastructure
that supports run-time malware immunization and forensics.

Figure 2 illustrates the overall architecture of the artificial malware immunization
based on dynamically assigned sense of self. To immunize an otherwise vulnerable pro-
gram based on dynamically assigned sense of self, we first use program instrumentation
tools (e.g., extended gcc) to statically instrument the vulnerable program into the immu-
nized program such that each system call invocation in the program contains the unique

3 We do recognize that there are certain attacks [11] that do not hijack control flow but rather
change critical data flow



mark that will be dynamically assigned by the artificial malware immunization infras-
tructure (i.e. the instrumented OS kernel) at run-time. When the immunized program is
loaded to run, the instrumented OS kernel first creates a process/thread for the program,
and then randomly generates and stores a unique mark X; as the dynamically assigned
sense of self of the control flow of the process/thread. The instrumented OS kernel puts
X into the run-time environment (e.g., envp[]) for the process/thread before transfer-
ring the control to the newly created process/thread. Therefore, each process/thread of
any immunized program will have its own unique dynamically assigned sense of self
X;.

When the process/thread invokes
any system call, it marks the system
call with the unique X; passed from the
instrumented OS kernel. When the in-
strumented OS kernel receives the sys-
tem call, it first looks up the unique  user Z
mark X; for the process/thread that has ~ *"
invoked the system call and then checks
if the received system call has the cor-
rect unique mark X;. Only the system \
call that has the correct unique mark ~
X, (i.e., dynamically assigned sense {
of self of control flow) is considered spee
self. Since each system call invoked
from the immunized program is instru-
mented to have the correct unique mark
X;, the instrumented OS kernel will
recognize the system calls invoked by
the immunized program as self. On the
other hand, if some malware has some-
how (e.g., via buffer overflow) gained control and started executing its malicious code
or the chosen libc function (e.g., system () ), the system calls invoked by the malware
do not have the correct mark X; since the walware is not part of the original immunized
code. Therefore, the instrumented OS kernel is able to catch the first and all the system
calls invoked by the malware unless the malware has somehow found out and used the
unique mark X; in its system calls. We will discuss how to make it difficult for the
malware to recover the dynamically assigned sense of self X; in section ??.

Immunized Program

Dynamically
assign the sense
of self X; to
process/thread i

Instrumented
System calls

Process/thread i
dynamic sense
of self X

dynamically assigned
sense of self X;

Fig.2. Artificial malware immunization
based on dynamically assigned sense of self
of control flow

2.3 Transparently Immunizing Programs

Given a potentially vulnerable program, we want to be able to transparently immunize it
so that it will be immune from control flow hijacking attacks while keeping the original
semantics unchanged. We achieve this goal of transparent malware immunization via
static program instrumentation.

Assuming we have access to the source code of the program to be immunized, we
have implemented the transparent malware immunization by extending gcc 3.4.3 such
that it will generate object code or executable with built-in support of the dynamically



assigned sense of self. Note our artificial malware immunization does not require any
changes on the source code of the program to be immunized.

Specifically, we use
an unsigned number X;

C Program to be Immum'z«h / Original Assembly Code\ ﬁstrumented Assembly Code
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pass the dynamically as- mented Implicit Rightmost Parameter
signed number X; as the
rightmost parameter, in addition to all existing parameters, to all function and system
call invocations. Essentially, this is equivalent to adding an implicit rightmost parameter
to all functions and system calls. Because the default C functional calling convention
passes parameters from right to left, which supports variable number of parameters, the
extra implicit rightmost parameter (i.e., the dynamically assigned sense of self X;) to C
function calls will not change the original semantics of the C function.

Figure 3 illustrates the transparent malware immunization of programs by showing
the assembly code of the original and the instrumented function invocations.

Instrumenting C Functions with Variable Number of Parameters

int __printf (const char xformat, ...)

{
va_list arg;
int done;

va_start (arg, format);
done = vfprintf (stdout, format, arg);
va_end (arg);

return done;

}

Certain C functions have variable number of parameters. For example, the above
snippet from file stdio—-common/printf. c of glibc 2.5 shows that function _print £
has variable number of parameters in addition to the fixed parameter format. Since
our transparent malware immunization is achieved through static program instrumen-
tation offline, the dynamic nature of variable number of parameters imposes new chal-
lenges that need special handling when immunizing the program with variable number
of parameters.

By parsing the invocation of __print £, we can find the exact number of actual pa-
rameters the caller of __print f passed to each instance of __print £ call. Therefore,
we can pass the dynamically assigned sense of self X; as the rightmost parameter, in
addition to variable number of actual parameters, when calling function _printf.



The problem arises when we are inside __print £, trying to pass the dynamically
assigned sense of self X; further down to function vfprint f. Specifically, we need
to accurately locate the position of X; passed by the caller of _printf from inside
_printf before we can pass it further down to functions called inside __printf.
Since __printf may have variable number of actual parameters passed and the exact
number of actual parameters may be determined by run-time input from user, there is
no way for us to statically find out the exact number of actual parameters passed by the
caller from inside _printf.

To address this issue, we instrument the function (e.g., __print f) of variable num-
ber of parameters with code that searches for the dynamically assigned sense of self
X passed by the function caller. Specifically, we introduce a random canary word used
as the marker of the right location of the dynamically assigned sense of self. The fol-
lowing code snippet shows how we can search for the right location of the dynamically
assigned sense of self X; from inside the functions of variable number of parameters
with the help of the random canary word.

movl $ebp, %eax
addl x, %eax
movl $0, %ebx
.Ll: cmpl canary, 4(%eax)
je .L2
cmpl n, %ebx
jge .L2
incl %$ebx
addl $4, %eax
Jmp .L1
.L2: push canary
push (%eax)

Note only functions of variable number of parameters need this special handling.
The canary word can be randomly chosen by the compiler, and different programs can
be instrumented with different canary word. Therefore, the adversary is not able to
identify the canary word used in one instrumented binary unless he has access to that
instance of the instrumented binary.

When some parameter passed by the caller of function of variable number of pa-
rameters happens to be the same as the random canary word chosen by the compiler,
the instrumented function or system call may use the wrong number as the dynamically
assigned sense of self. In this case, legitimate system call may be mistakenly regarded
as nonself. Note this autoimunity problem is due to the limitation of our current imple-
mentation rather than the model of dynamically assigned sense of self. In practice, we
can effectively make the probability of such autoimmunity extremely small by using
large size canary. With n-bit long canary word, the probability of autoimmunity for the
current immunization implementation of functions of variable number of parameters is
no more than 5.

2.4 Artificial Malware Immunization Infrastructure

Besides transparently immunizing programs, artificial malware immunization requires
run-time support from the infrastructure. The malware immunization infrastructure is
responsible for 1) generating the random, dynamically assigned sense of self for each



newly created process/thread; and 2) checking each system call from interested pro-
cess/thread for the dynamically assigned sense of self and acting according to policy
specified for each process/thread at run-time.

To build the malware immunization infrastructure, we have instrumented Linux
kernel 2.6.18.2. Specifically, we have added the following two integer fields to the
task_struct

unsigned int DASO0S;
unsigned int DASoSflag;

When the instrumented kernel creates a new process/thread, it will generate a ran-
dom number and store it in field DASoS as the dynamically assigned sense of self of
the newly created process/thread. Before the instrumented kernel transfers the control
to the newly created process/thread, it puts the dynamically assigned sense of self in the
run-time environment at user space so that the newly created process/thread can use it
when invoking any function or system call.

Before the immunized user space program learns its dynamically assigned sense
of self from its run-time environment at the beginning of its execution, the first few
function and system calls of the newly started process/thread will not have the correct
dynamically assigned sense of self. Once the newly started process/thread learns its
dynamically assigned sense of self from its run-time environment, all the subsequent
function and system calls will have the correct dynamically assigned sense of self.

By default, field DASoSflag is unset meaning that the process/thread will not be
checked by the instrumented kernel for the dynamically assigned sense of self. A user
level utility allows user to inform the malware immunization infrastructure about which
process/thread it should check for the dynamically assigned sense of self and what it
should do once any nonself system call is detected.

Note the user level utility only changes the global state of the malware immuniza-
tion infrastructure, and it does not change the per process/thread field DASoSflag.
Such a design is to accommodate the first few system calls that do not have the cor-
rect dynamically assigned sense of self. When the instrumented kernel is set to check
a particular process/thread, it will not do any specified action (e.g., report, block) on
the process/thread unless the per process/thread field DASoSflag is set. The instru-
mented kernel will set the per process/thread field DASoSflag once it sees the first
system call that has the correct dynamically assigned sense of self. It will further mark
the process/thread as nonself by setting field DASoSf1ag once any nonself system call
is detected.

One nice feature of this two level organization of the flag of the dynamically as-
signed sense of self is that it allows inheritance of the flag. Specifically, the child pro-
cess will inherit field DASoSflag from the parent process. Such a inheritance of flag
enables us to effectively track those nonself actions and new processes spawned by the
malware process. For example, assume process A has been compromised and controlled
by the malware, and we want to do live forensics on process A and see what actions
the malware is taking. Once the malware issues a command (e.g., Is) which spawns a
new process B, the newly created process B will have field DASoSf1lag set as nonself
since it is inherited from process A, which is already marked as nonself by the malware



immunization infrastructure. Therefore, our artificial malware immunization infrastruc-
ture is able to identify and collect all the nonself actions of the identified malware in
real-time.

To enable the passing of the dynamically assigned sense of self from user space to
kernel via system calls, we have instrumented the system call entrance interface in glibc
2.5. This turns out to be the most time consuming task in building the artificial malware
immunization infrastructure. We have manually instrumented 12 assembly files and
several header files, most of which dealing with low-level interface (e.g., getcontext,
swapcontext) with the kernel.

3 Evaluation

To evaluate the effectiveness and efficiency of our artificial malware immunization
framework based on dynamically assigned sense of self, we have implemented the mal-
ware immunization infrastructure by instrumenting the Fedora Core 6 Linux kernel and
glibc 2.5. To support transparent immunization of programs, we instrumented gcc 3.4.3
such that it will “immunize” the generated the executable or library with support of
dynamically assigned sense of self. In this section, we show how our artificial malware
immunization framework is able to detect, block malware actions in real-time, and what
real-time malware forensics is can support.

3.1 Effectiveness of the Artificial Malware Immunization

To demonstrate the practical value of our artifical malware immunization, it is desirable
to use real-world exploits on real-world vulnerble applications. However, many known
real-world exploits are based the same attack vector (e.g., buffer overflow), and there
could be new attack vectors (e.g., return-oriented programming [31]) that have not (yet)
been used by any malware in the wild. Therefore, simply experimenting with more
known real-world malwares does not necessarily tell more about the effectiveness of
our artificial malware immunization.

Since our artifical malware immunization detects and blocks the malware action
based on dynamically assigned sense of self on each system call invoked by the im-
munized program, the way in which the malware exploits the immunized program —
be it stack overflow, heap overflow, integer overflow, format string overflow, or some
other unkown attack vector — is not important. Here we assume the malware can some-
how seize the control flow of the vulnerable program and start running its malicious
logic (e.g., via code injection, return-to-libc or return-oriented programming [31]). The
effectiveness of our artificial malware immunization is measured by how well it can
detect and block the system calls invoked by the infecting malware and how well it can
immunize those otherwise vulnerable applications.

To demonstrate the effectiveness of our malware immunization framework, we have
chosen to experiment with two real world exploits on real-world applications: ghttpd
buffer overflow exploit [1], Snort DCE/RPC packet reassembly buffer overflow exploit
[3]. While ghttpd is a very compact Web server with less than 800 lines of C code,
Snort [2] is the most popular open source network based IDS with over 140,000 lines
of C code. Specifically, Snort is claimed to be the “most widely deployed IDS/IPS
technology worldwide” with over 250,000 registered users. Immunizing a real world
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application of such a size and popularity would be a goot test on how practical our
artificial malware immunization is.

In addition to traditional code injection exploits, we have experimented with re-
cently discovered return-oriented exploit [31]. To cover those potential but not (yet)
identified exploits, we have used the buffer overflow benchmark developed by Wilan-
der and Kamkar [36] which contains 20 synthetic attacks based on vaious stack overflow
and heap overflow. Our artificial malware immunization is able to block all the 20 syn-
thetic attacks. In the rest of this section, we focus on describing the experiments on the
two real-world exploits and the recently discovered return-oriented exploit [31].

In our experiments, we have first “immunized” the otherwise vulnerable applica-
tions with our transparent malware immunization tool (i.e., instrumented gcc 3.4.3) and
then have launched the working exploits against the “immunized” applications. Our ar-
tificial malware immunization framework is able to detect, block all the tested exploits
in real-time. In addition, it supports preliminary but real-time forensics analysis on the
live malware actions.

Real-time Detection of Malware Infection We set the malware immunization in-
frastructure to be in detection mode when we have launched the working exploit on
the immunized Snort 2.6.1. Figure 4 shows the real-time detection of nonself system
call and nonself command of the working exploit on Snort 2.6.1. Specifically, Figure
4(a) shows the detection of the first nonself system call # 102 invoked by the compro-
mised Snort process 5114. Figure 4(b) shows the detection of the first nonself system
call invoked by the command “ps” issued from the remote root shell gained from the
compromised Snort 2.6.1. As shown in the screenshot, the original Snort process 5114
has been changed to a “sh” process by the exploit. Although the “ps” command issued
by the attack created a new process 5169, our artificial malware immunization infras-
tructure was able to correctly identify the newly spawned process 5169 as nonself and
report it in real-time.

As shown in the “DASOS Message” message boxes in Figure 4, all the real-time
detection messages are timestamped with precision up to millisecond.
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Real-time Blocking of Malware Actions In addition to real-time detecting and
reporting the first and all subsequent nonself system calls and nonsef commands of
malware exploits, we can set the malware immunization infrastructure to block any
nonself system call to defeat otherwise working exploits in real-time. Unlike random-
ization based approaches (e.g., ASLR) which usually cause the program under attack
to crash with segmentation fault, the block mode of our artificial malware immuniza-
tion framework can gracefully terminate the process/thread that has been attacked and
compromised.

Real-time Forensics of Live Malware Actions Another unique feature of our ar-
tificial malware immunization framework is that it enables real-time forensics of live
malware actions. We have developed a user space utility dasosTSViewRT. sh to
identify and report the first and all the subsequent nonself system calls invoked, nonself
commands issued by the attacker and nonseld processes spawned in real-time.

Our artificial malware immunization infrastructure can not only collect all the non-
self system calls but also all the nonself processes and corresponding commands trig-
gered by the exploit. We have developed a user level utility dasosNewProcCmdRT. sh
to collect and report all those nonself processes and commands triggered by the exploit.
Figure 5 shows all the nonself processes and corresponding commands of the working
exploit of Snort 2.6.1. Specifically, the exploit first compromised the Snort process 5114
into a bourn shell, then issued commands “ps”, “id”, “Is”, “Is” and “ifconfig” respec-
tively. As with all dasos messages, the reported nonself processes and corresponding
commands are timestamped at the precision of millisecond.

3.2 Performance Measurements

Our artificial malware immunization infrastructure intercepts and checks all system
calls, and our transparent malware immunization tool instruments each function in-
vocations in programs. To understand the performance impact of our artificial malware
immunization, we have measured both the run-time overhead and the size overhead of
our malware immunization infrastructure and our transparent malware immunization
tool.



Our physical test platform is a MacBook Pro laptop with one 2.4GHz Intel Core 2
Duo CPU and 2GB memory running Mac OS X 10.5.8. The Fedora Core 6 Linux is
running inside a vmware fusion virtual machine with 512MB RAM. For all our run-
time performance measurements, we have used the average result of 10 independent
runs.

We have used UnixBench to measure the run-time performance overhead of our
artificial malware infrastructure over the original 2.6.18.2 Linux kernel. Specifically
we ran UnixBench 10 times in our artificial malware immunization infrastructure and
the original 2.6.18.2 Linux kernel and used the average to calculate the run-time perfor-
mance overhead. Figure 6 shows the run-time overhead of 9 benchmarks of UnixBench.
The highest run-time performance overhead is 6.8% for file copy with 4KB buffer
size. The second highest overhead is 6% for shell scripts. On the other hand, the over-
heads for process creation and system call are 3.2% and 0.7% respectively. The overall
UnixBench overhead is 4%. Therefore, our artificial malware immunization incurs ne-
glectable run-time performance overhead.

4 Related Works

Models of self Our work is closely related to how to model the “self” of programs.
Forrest et al. [15, 14] have pioneered in applying the idea of immunology to computer
security. In their seminal paper [15], they have first demonstrated that the “self” for Unix
processes can be approximately expressed by short sequences of system calls obtained
from run-time traces of the protected process, and such a sense of self can be used to
build intrusion anomaly detection systems. A number of followup works [35,29, 13]
have improved the effectiveness of the system call sequence based models of self in
the context of intrusion anomaly detection. Model-carrying code [30] builds security-
relavant model of self upon not only the system call sequence (in form of FSA) but also
the value and relationship of system call arguments. Wagner and Dean [32] have first
demonstrated that it is indeed possible to build a “complete” (but not necessarily pure)
system call sequence based model of self via static analysis of the program source code
such that there will be no false positive (there will be false negative though) in detecting
the nonself. A number of later works [17] have improved the effectiveness and run-time
efficiency of the models of self built from static analysis.

Since the program control flow graph contains all legitimate system call sequences,
the control flow graph is a more precise expression of the “self” of the program. A
number of methods [22, 5,4, 18,26] have been proposed to enforce the run-time con-
trol flow integrity of the protected program at different precisions. However, it is more
difficult to model and enforce the complete control flow than system call sequence at
run-time, especially when there are dynamically linked or share libraries involved. To
mitigate data flow attacks [11], researchers have proposed modelling system call argu-
ments [8] or the data flow graph [10]. In a sense, these models of run-time data flow can
be thought as part of the normal behavior or “self” of the program.

Our model of dynamically assigned sense of self differs from all these works in
that it actively assigns a unique mark to the protected program rather than passively
reflecting the inherent nature (e.g., system call sequence, control or data flow) of the
program. While authenticated system call [27, 19] actively assigns the authentication



code to each system call, it does not form any sense of self of the program in that it can
not distinguish different programs if they call any shared library functions.

Malware defense Stack guard [12], stack ghost [16] and windows vaccination [25]
prevent stack based overflow by protecting the return address from being modified by
the malware. However, they are not effective against other attack vectors such as heap
based overflow. Linn et al. [24] proposed a method to prevent injected code from invok-
ing system calls by checking the system call instruction address at run-time against pre-
viously recorded locations of legitimate system call instructions. While such a method
can effectively block the system calls triggered by the injected code, it is not effective
against return-to-libc attack where the malware calls existing libc functions rather than
the system call.

Randomization based approaches [20, 21, 6, 7,28, 34] protect applications and sys-
tems via randomizing the instruction set, address space layout or address-like strings
in the packet payload. However, they can not detect the malware before it crashes the
vulnerable application. In addition, it is difficult to apply the instruction set random-
ization (ISR) based approaches to shared libraries which are supposed to be shared
by multiple applications. In contrast, our proposed malware immunization based on
dynamically assigned sense of self can detect malware before it crashes the vulnera-
ble applications. This unique capability enables new forensics analysis functionalities
that were not possible before. Furthermore, our malware immunization framework is
amenable to dynamically linked and shared libraries.

5 Conclusions

Inspired by the self-nonself discrimination in natural immune systems, we have ex-
plored a new direction in building the artificial malware immunization. Our malware
immunization framework is based on dynamically assigned sense of self, which is es-
sentially a randomly generated unique mark assigned to each system call of the immu-
nized program. Such a dynamically assigned sense of self enables us to effectively and
efficiently distinguish the unmarked nonself (i.e., malware action) from the marked self.

Specifically, our artificial malware immunization framework is able to detect the
first and all the subsequent nonself system calls and nonself commands issued by almost
all application level malwares. This unique capability enables not only the real-time
detection, blocking of malware, but also the real-time forensics of the live malware
actions. Since our malware immunization does not require any specific knowledge of
the malware, it could be effective against previously unknown malwares.

We have implemented the prototype of our artificial malware immunization frame-
work and tested it with both code injection and the return-oriented exploit [31]. Our
transparent malware immunization tool has successfully instrumented the GNU stan-
dard C library (glibc 2.5 of about 1 million lines of C code) and immunized real-world,
vulnerable applications (e.g., Snort 2.6.1 of 140,000 lines of C code) against other-
wise working exploits. Our experiments also show that our malware immunization in-
curs about 4% run-time performance overhead. These empirical results demonstrate the
promise of our artificial malware immunization framework in protecting real-world,
vulnerable applications from malwares.
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