
Tracing Traffic through Intermediate Hosts
that Repacketize Flows

Young June Pyun∗, Young Hee Park∗, Xinyuan Wang†, Douglas S. Reeves∗ and Peng Ning∗
∗ Department of Computer Science

North Carolina State University, Raleigh, NC 27695, USA
Emails: {yjpyun,ypark3,reeves,pning}@ncsu.edu

† Department of Information and Software Engineering
George Mason University, Fairfax, VA 22030, USA

Email: xwangc@gmu.edu

Abstract—Tracing interactive traffic that traverses stepping
stones (i.e., intermediate hosts) is challenging, as the packet
headers, lengths, and contents can all be changed by the stepping
stones. The traffic timing has therefore been studied as a means
of tracing traffic. One such technique uses traffic timing as a
side channel into which a watermark, or identifying tag, can
be embedded to aid with tracing. The effectiveness of such
techniques is greatly reduced when repacketization of the traffic
occurs at the stepping stones. Repacketization is a natural effect
of many applications, including SSH, and therefore poses a
serious challenge for traffic tracing.

This paper presents a new method of embedding a watermark
in traffic timing, for purposes of tracing the traffic in the presence
of repacketization. This method uses an invariant characteristic
of two traffic flows which are part of the same stepping stone
chain, namely, elapsed time of the flows. The duration of each
flow is sliced into short fixed-length intervals. Packet timing is
adjusted to manipulate the packet count in specific intervals,
for purposes of embedding the watermark. A statistical analysis
of the method, with no assumptions or limitations concerning
the distribution of packet times, proves the effectiveness of the
method given a sufficient number of packets, despite natural
and/or deliberate repacketization and perturbation of the traffic
timing by an adversary. The method has been implemented
and tested on a large number of synthetically-generated SSH
traffic flows. The results demonstrate that 100% detection rates
and less than 1% false positive rates are achievable under
conditions of 2 seconds of maximum timing perturbation and
12% repacketization rate, using fewer than 1000 packets.

I. INTRODUCTION

Network-based attacks are a serious threat to the Internet
community. Despite the development of sophisticated defense
mechanisms, attacks continue to increase. Unfortunately, iden-
tifying the source of an attack is a challenging task due
to the anonymous nature of the Internet [1] and evasion
techniques [2]–[5] available to the attackers. In the case of an
interactive attack, where an attacker interacts with a remote
victim host using applications such as telnet/ssh, one of the
simplest ways to hide the source of an attack is staging the
attack through a series of intermediate hosts, called stepping
stones. Tracing such an attack back to the origin is difficult

This work was supported by DTO under contract NBCHC030142. The
contents of this paper do not necessarily reflect the position or the policies of
the U.S. Government.

since the attack is staged through several TCP connections, and
the packet headers, lengths, and contents can all be changed by
the stepping stones. Existing IP traceback techniques [6], [7]
will only trace packets back to the last stepping stone in the
sequence. Note that although this paper discusses tracing an
attack, it is not confined to such traffic and can be generalized
to tracing any traffic generated by interactive communication
protocols (ssh/telnet). We limit our scope to interactive traffic
due to its timing constraints; the amount of delays (or noise)
that can be added to the traffic is bounded [8], which is
essential for tracing.

Tracing interactive traffic through stepping stones requires
correlating a chain of connections linked by the stepping
stones. So far, techniques based on traffic timing (delays
between packets in the flow) [8]–[12] have been successful
in tracing such traffic. Especially, Wang and Reeves [11], [12]
proposed novel methods, which use traffic timing as a side
channel into which an identifying tag (called a watermark) can
be embedded to aid with tracing traffic. They showed, through
analysis and simulation, that these methods are highly robust
against a limited amount of perturbation of the traffic timing
(by adding delays to each packet) introduced by an adversary,
in an attempt to defeat tracing.

However, the effectiveness of these watermarking tech-
niques is greatly reduced when the traffic is transformed at
the stepping stones, changing the packet count of the traffic
flow. Since these tracing techniques require accurate packet
synchronization between two connections being correlated,
such transformations cause packet de-synchronization. Unfor-
tunately, many such cases arise in practice, most commonly
due to TCP repacketization [13]. Repacketization is a natural
effect of many applications, including SSH [5], and therefore
poses a serious challenge for traffic tracing. Moreover, since
repacketization occurs when packets are buffered at the step-
ping stones before being forwarded, its occurrence may be
increased by the adversary’s timing perturbation, causing more
packets to be buffered. Fig. 1 illustrates an example of packet
de-synchronization caused by repacketization.

In this paper, we propose a new method of embedding
a watermark in traffic timing, for purposes of tracing the
traffic across stepping stones, in the presence of not only

1 2 3 4 6 7 8 95

1 2 3 5 64

Upstream

Flow

Downstream

Flow

Fig. 1. Illustration of packet de-synchronization caused by repacketization.
Packets 〈3, 4, 5, 6, 7, 8, 9〉 in the upstream flow are repacketized into packets
〈3, 4, 5, 6〉 in the downstream flow and are de-synchronized thereafter.

timing perturbation but also repacketization. Our correlation
technique utilizes the elapsed time of the flows, which is an
invariant characteristic of two connections that are part of
the same stepping stone chain. The duration of each flow
is sliced into short fixed-length intervals, which are used for
synchronizing two connections being correlated. Packet timing
is adjusted to manipulate the packet count in specific intervals,
without adding or deleting any packets, for the purpose of
embedding a watermark. This new method does not require
precise clock synchronization between the watermark encoder
and decoder, as the intervals are self-synchronized during
decoding, adjusting to the adversary’s timing perturbation. The
analytical and experimental results show that the new method
is very effective in practice, despite natural and/or deliberate
repacketization and perturbation of the traffic timing, produc-
ing high detection rates and low false positive rates.

The rest of the paper is organized as follows: section 2 first
reviews the related work; section 3 introduces the proposed
watermarking technique with a theoretical model; section 4
analyzes the effectiveness of the method and the impact of both
timing perturbation and repacketization; section 5 presents
a general framework for the implementation, and section 6
evaluates the method through experiments; finally, section 7
concludes this paper with future research directions.

II. RELATED WORK

A. Connection Correlation Techniques

Tracing interactive traffic through stepping stones requires
the discovery of an association (correlation) between two
connections at the stepping stone, such that these connec-
tions act as consecutive flows in a chain of connections.
Generally, connection characteristics which remain unchanged
(i.e., invariant) at the intermediate host are used to determine
whether two connections are correlated. The traffic can be then
traced back to the origin by linking the correlated connections
together. So far, substantial research has been done on such
connection correlation techniques.

Following the early work based on packet payloads [3],
[14], techniques based on traffic timing were proposed to deal
with encrypted connections [15], [16]. In these techniques, the
timing characteristic of an interactive connection was assumed
to be unique and preserved across stepping stones such that it
can be utilized for correlating connections [16].

Faced with the potential for an adversary to use active
timing perturbation at the stepping stones in an attempt to

defeat timing-based correlation, more sophisticated timing-
based techniques were proposed later. They analyzed and
compared the long-term behavior [8] and packet counts [10]
of the connections, assuming that the adversary’s delays are
bounded.

As opposed to the above passive approaches, Wang and
Reeves [11], [12] proposed active timing-based correlation
techniques that are robust against random timing perturbation.
Their method embeds unique watermarks into connection
flows, by actively manipulating packet timing of the flows,
such that these watermarks can be identified when correlating
connections. These active approaches have shown to be very
successful for traffic tracing.

A number of new techniques were also introduced to
address dummy packets (called chaff) that can be added into
traffic by an adversary, in addition to the timing perturbation.
These techniques provide lower bounds on the amount of chaff
required to evade detection [10] and upper bounds on the
number of packets needed for a confident detection [17], and
compare tradeoffs among detection rates, false positive rate,
and computation cost [18].

B. Watermarking for Connection Correlation

Traditionally, digital watermarking has been developed as
a technical means for protection of intellectual property, such
as copyright protection and distribution tracing. Watermarking
generally provides methods to embed (encode) information
(watermark) transparently into a carrier signal, such that it
can be retrieved (decoded) from the signal later. In addition to
preserving the carrier signal quality, it is required to be robust
against countermeasures intended to distort or remove the
embedded information from the signal. Without the knowledge
of secret parameters (keys), as in cryptography, the knowledge
of its existence alone should not make it easy to remove.
Detailed information on watermarking can be found in [19].

In recent years, Wang and Reeves [11], [12] have adopted
conventional watermarking concepts to the domain of traffic
tracing. Specifically, their methods actively encode a unique
watermark w into an upstream flow of the stepping stone con-
nection chain by manipulating the inter-packet delays (IPDs)
of certain pre-selected packet pairs, such that these changes are
propagated to the downstream flows. If w is robust enough, it
is highly likely to be recognized in the downstream flows but
nowhere else. Here, the packet timing is considered as a carrier
signal, and changes in the packet timing are considered as the
watermark. Since the decoder does not have the original traffic
at hand, but only the watermarked traffic, these techniques can
be classified as semiblind watermarking [19].

The two versions of the above techniques mainly differ in
the process of embedding the watermark, i.e., how the packet
pair selection and their timing adjustment are accomplished. In
order to encode a single watermark bit, the earlier method [11]
uses a single IPD, delaying the second packet by an amount
that results in an IPD that is a multiple of a specified step
size. The binary watermark bit is encoded/decoded by the

quantization level. This technique is comparable to conven-
tional Quantization Index Modulation [20], which is based on
quantizing the host signal vector to transmit a message.

The second method [12] is more efficient and more robust,
but is also more complex. In this method, the second order
timing difference (i.e., the difference between the IPDs of
two packet pairs) is used, and it is the average second order
timing difference of two groups of packet pairs into which
the watermark value is encoded. This is accomplished either
by increasing the IPDs of the first group of packet pairs,
and/or by decreasing the IPDs of the second group of packet
pairs. Encoding a watermark bit with value 0 requires that the
average IPD of the first group be greater than the average IPD
of the second group, while encoding a value of 1 requires the
opposite. This technique is similar to Patchwork watermarking
method [21], which modifies a statistic of two components of
a signal in opposite directions in order to encode a value.

III. INTERVAL-BASED WATERMARKING

This paper proposes an innovative and practical water-
marking technique for purposes of tracing traffic. It extends
the previous watermarking methods [11], [12], so as to pro-
vide robustness against not only timing perturbation but also
repacketization—a critical issue in the previous work.

The proposed technique uses the elapsed time of the flows,
which is an invariant characteristic of two flows that are part
of the same stepping stone chain. The duration of each flow
is partitioned into short fixed-length intervals which are used
for synchronization purposes between the two flows. Packet
timing is then adjusted to manipulate the packet count of
the intervals, in an attempt to encode a watermark into the
upstream flow, so that it can be unambiguously decoded in
the downstream flow. Here, the watermark is no longer tied
to any specific packet. It is rather bound to the intervals,
which are unaffected by changes in packet count of the
flows. This technique is comparable to conventional block-
based patchwork techniques [22] used for still images, where
a sequence of bits are modified rather than just one bit, for a
higher resistance to lossy data compression.

A. Watermarking Model

Let a flow F be selected from a large pool of interactive
traffic flows. The selected flow F with a stream of packets
〈P1, P2, . . .〉, indexed with respect to the arrival timing order,
is divided into intervals Ii (i> 0, denoting the interval index)
of time T (> 0) starting from a random time offset o (> 0).
An interval Ii then contains Xi contiguous packets, where
Xi is a random variable representing the number of packets
in the interval Ii. Due to the random offset associated with
each different flow F , an interval Ii is located randomly with
respect to the remaining flows in the pool. Hence, it follows
that X1, X2, . . . are identically distributed with respect to all
the flows. Here, we make no assumption on the distribution
of Xi but will denote the mean as µx and the variance as σ2

x,
whose values are both proportional to the interval length T .

Then, r (> 0) pairs of 2 consecutive intervals are randomly
selected. For each pair of the intervals, the first interval
is denoted as I1,k, whereas its counterpart is denoted as
I2,k (k = 1, . . . , r). Assuming a long lasting flow consisting
of many intervals, X1,k (k = 1, . . . , r) are random samples
from a sufficiently large population (Xi, i> 0) of a common
distribution and hence independent among themselves. Hence,
X1,k (k =1, . . . , r) are iid—this is true for X2,k (k =1, . . . , r)
as well. Consequently,

E(X1,k) = E(X2,k) = µx, V (X1,k) = V (X2,k) = σ2
x.

However, each of the pairs (X1,k and X2,k) may not be
independent of each other, depending on the distribution of Xi.
In fact, since interactive traffic exhibits ON-OFF activity with
bursts of packets and inter-arrival times of the packets in Pareto
distribution [9], [23], we assume Corr(X1,k, X2,k) > 0.1

Let the packet count difference of the above selected interval
pair be

Yk =
X1,k −X2,k

2
(k =1, . . . , r). (1)

Then, E(Yk)=0 and V (Yk) 6 σ2
x/2, where the maximum vari-

ance occurs when Corr(X1,k, X2,k) = 0. Furthermore, since
X1,k and X2,k are iid of their own, so are Yk (k =1, . . . , r).

Now with the sample size of r, representing a redundancy,
the sample mean of Yk is defined as

Yr =
1
r

r∑

k=1

Yk . (2)

Then, since Yk (k = 1, . . . , r) are iid, it can be easily shown
that E(Yr)=0 and V (Yr) 6 σ2

x/2r. Note that, the distribution
of Yk is symmetric about the mean (=0) since Yk represents
the difference of two random variables that are of the same
distribution. Hence, the distribution of Yr is also symmetric
about the mean with its variance decreasing as we increase r.

B. Watermark Encoding/Decoding

As in the conventional watermarking and cryptography, the
watermarking method relies on a shared secret (key) between
the encoder and the decoder. The new method assumes
that the following parameters are pre-distributed: a random
offset o> 0, an interval length T > 0, an embedding interval
selection function S, and a binary watermark w of l bits.
Once the watermark embedding interval pairs are selected,
the encoder encodes the intended watermark w onto a given
flow F . Similarly, given a watermarked flow Fw, the decoder
decodes a watermark w′ and then compares it against w for a
correlation result.

Specifically, the interval-based watermarking encodes a wa-
termark bit by either increasing or decreasing Yr by an amount
of µx, depending on the given value of the watermark bit.
According to (1) and (2), increasing Yr by µx can be achieved
by increasing 1

r

∑r
k=1 X1,k by µx and simultaneously de-

creasing 1
r

∑r
k=1 X2,k by µx. The former is accomplished by

1Our experiment confirmed that the synthetic SSH traffic flows, generated
with tcplib [24], show Xi and Xi+1 (i > 0) being positively correlated.

(a) embedding of watermark bit `0'

load clear

time

Original
Flow

Watermarked
Flow

watermark embedding

interval pair

(b) embedding of watermark bit `1'

clear load

time

Original
Flow

Watermarked
Flow

watermark embedding

interval pair

Fig. 2. Illustration of single watermark bit encoding: bit ’0’ and bit ‘1’.

loading each of the corresponding intervals I1,k (k =1, . . . , r);
all the packets in the preceding interval are shifted into this
interval by adding a maximum delay d= T (called timing
adjustment) to each of the packets.2 The latter is accomplished
by simply clearing each of the corresponding intervals I2,k

(k =1, . . . , r); all the packets are delayed to the following
interval in the same manner. Note that, in order to avoid
conflicts between embedding interval pairs, at least one non-
embedding interval is required as a buffer between any two
successive embedding interval pairs. Decreasing Yr by µx can
be done in the opposite way.

To encode a watermark bit ‘0’, Yr is increased as stated
above so that the result, denoted as Y w

r , is positive (Y w
r > 0).

On the other hand, to encode a watermark bit ‘1’, Yr is
decreased so that the result is negative (Y w

r < 0). It not
guaranteed that Yr can be increased; the preceding interval
may happen not to contain any packets. The use of redundant
coding reduces the likelihood that a particular value cannot
be coded because of an absence of packets. In addition, the
watermark itself is l bits in length, and is tolerant to small
errors in coding. Fig. 2 only illustrates the encoding of a single
bit, with no redundancy (r =1).

The encoded watermark bit can then be easily decoded. Let
Y w′

r at a decoder be a random variable comparable to Y w
r

at an encoder. To decode a watermark w′ of a watermarked
flow Fw, Y w′

r is computed over the same embedding intervals
used for encoding w and then compared against 0; a positive
result implies a watermark bit of ‘0’, whereas a negative
result implies a watermark bit of ‘1’. A correct correlation
is achieved if w = w′.

IV. THEORETICAL ANALYSIS

A. Probabilistic Watermark Success Rate

In the interval-based watermarking, there is a non-zero prob-
ability such that an encoded watermark bit cannot be decoded

2Although there may be an upper bound on the increase of an Xi due to
the limited transmission rate, its impact is usually negligible since it is highly
likely that its counterpart can be decreased in such a case.

correctly. That is, if a watermark resulted in Y w
r 6 0 for w =0

(Y w
r > 0 for w =1) for any reason, the decoded watermark

w′ may not coincide with the intended watermark w and may
hence fail to correlate the flows correctly. In order to measure
the performance of the interval-based watermarking, we define
the probability that a watermark bit is decoded correctly as a
watermark success rate and express it as Pr

[
Y w

r > 0
]

for
w =0 (Pr

[
Y w

r < 0
]

for w = 1). Due to the symmetry of the
distribution of Yr, only the former case (w =0) is analyzed in
this paper.

First, since Y1, . . . , Yr are random samples, so are
Y w

1 , . . . , Y w
r after a watermark is encoded. Hence, assuming

a large sample size of r, the distribution of Y w
r can be

approximated to a standard normal distribution, according to
the Central Limit Theorem [25];

Pr




(
Y w

r − E(Y w
r)

)
√

V (Y w
r)

> ξ


 ≈ 1− Φ(ξ), (3)

where

Φ(ξ) =
∫ ξ

−∞

1√
2π

e−u2/2du .

Let Xw
1,k and Xw

2,k denote the respective results of X1,k

and X2,k after a watermark bit ’0’ is encoded. Then, Xw
1,k =

X1,k + X0,k and Xw
2,k = 0 (k =1, . . . , r). Since E(Xi) = µx

and V (Xi) = σ2
x (i> 0), we have

E(Xw
1,k) = 2µx

E(Xw
2,k) = 0 (k =1, . . . , r)

while

V (Xw
1,k) = σ2

x + σ2
x + 2Corr(X1,k, X0,k)σ2

x 6 4σ2
x

V (Xw
2,k) = 0 (k = 1, . . . , r),

where the maximum variance occurs when
Corr(X1,k, X0,k) = 1. Then, it follows that

E(Y w
r) = µx, V (Y w

r) 6 σ2
x/r.

Now, when applied to (3), the watermark success rate can
be approximated as follows:

Pr
[
Y w

r > 0
]

= Pr




(
Y w

r − E(Y w
r)

)
√

V (Y w
r)

>
−E(Y w

r)√
V (Y w

r)




≈ 1− Φ


 −E(Y w

r)√
V (Y w

r)




> 1− Φ
(−√rµx

σx

)
.

(4)

This derivation implies that, for a given r, the watermark
success rate is decreased as µx decreases and/or σ2

x increases,
and vice versa. On the other hand, however, this rate can
always be increased to as high as 1, regardless of the exact
distribution of Xi as long as µx > 0, by increasing the redun-
dancy r. Note that, this result accounts for the worst case,
where Corr(Xi, Xi+1) = 1.

B. Impact of Repacketization and Timing Perturbation

It is plausible that an adversary may actively manipulate his
traffic that might carry a watermark, in an attempt to remove
or distort the watermark. One can easily delay the packets
of the flow at the stepping stone, which would transform the
traffic timing. This timing perturbation is challenging since
it is, in most cases, accompanied by repacketization of the
flow, which transforms the packet count of the flow as well
as its timing. We now analyze the negative impact of these
transformations on the watermark success rate of the interval-
based watermarking.

First, the proposed method assumes the delay model of
Donoho et al. [8] where an adversary is confined to con-
servative transformation due to the inherent constraint of the
interactive traffic; i) there is a limit on the maximum delay an
adversary can tolerate when perturbing his traffic, and ii) these
delays are short-termed local jittering and cannot transform the
long-term characteristic of the traffic [8]. Furthermore, these
delays are, regardless of their distribution, assumed to be ran-
dom with respect to the watermark embedding packets since
the attackers have no knowledge of where these watermarks
are embedded. Additionally, the amount of repacketization
on interactive traffic is assumed to be bounded as well, due
to the maximum transmission unit (MTU) of the underlying
network and availability of the data generated by the user;
most interactive traffic consists of slow key stroke commands
followed by small result data and a long OFF-periods.

Let Xp
1,k, Xp

2,k, and Y p
r denote the respective results of

Xw
1,k, Xw

2,k, and Y w
r after the watermarked flow Fw (w =0)

is randomly perturbed and/or repacketized (k =1, . . . , r). Now
let D > 0 be the maximum delay an adversary is able to add
to each packet. In addition, let P1,k be a random variable
representing a decrease of the first packet count Xw

1,k as a
result of timing perturbation and/or repacketization; its mean
and variance are denoted as µp and σ2

p, respectively. Similarly,
let Q2,k (0 6 Q2,k 6 P1,k 6 Xw

1,k) be a random variable
representing an increase of the second packet count Xw

2,k due
to the same cause; its mean and variance are denoted as µq and
σ2

q , respectively. Note that P1,k and Q2,k are both iid of their
own as with Xw

1,k and Xw
2,k, although they may be dependent

to each other. In fact, both are proportional to Xi and D, and
conversely proportional to T to a certain extent.

Then,

Xp
1,k = Xw

1,k − P1,k

Xp
2,k = Xw

2,k + Q2,k (k =1, . . . , r).

It follows that,

E(Xp
1,k) = 2µx − µp

E(Xp
2,k) = µq (k = 1, . . . , r)

while

V (Xp
1,k) 6 4σ2

x + σ2
p

V (Xp
2,k) = σ2

q (k =1, . . . , r),

where the maximum variances occur when
Corr(Xw

1,k, P1,k) = 0 (Corr(Xw
1,k, P1,k) > 0). As a result,

E(Y p
r) = µx − µp + µq

2
, V (Y p

r) 6 (σ2
x +

σ2
p + σ2

q

4
)/r;

the maximum variance occurs when Corr(Xp
1,k, Xp

2,k) = 0
(Corr(Xp

1,k, Xp
2,k) > 0). Finally, when applied to the Central

Limit Theorem in (3), the watermark success rate, taking
account of both timing perturbation and repacketization, is
approximated to

Pr
[
Y p

r > 0
]
≈ 1− Φ


 −E(Y p

r)√
V (Y p

r)




> 1− Φ


−√r(µx − 1

2 (µp + µq))√
σ2

x + 1
4 (σ2

p + σ2
q)


 .

(5)

When compared to the previous result (4) without any transfor-
mation, the lower bound of the success rate is decreased. As
a result of both timing perturbation and repacketization, the
packet count of a loaded interval has reduced, whereas that
of a cleared interval has increased, reducing the overall mean
of the packet count difference (E(Y w

r) > E(Y p
r)). Moreover,

the increase in the variance of packet count of the embedding
interval pairs has increased the overall variance of the packet
count difference.

The embedded watermark may be completely removed if
2µx = µp + µq . This occurs when the maximum delay
D of the adversary is considerably long, compared to the
interval length T , such that a large portion of the watermark
embedding packets are shifted out of their original interval into
another. Hence, an interval length T should be as large as the
average timing perturbation (about D/2) in order to retain as
many packets as possible in their original embedding intervals.
However, as long as 2µx > µp + µq , the watermark success
rate can be increased with a higher redundancy, despite shorter
interval length (T < D/2).

V. IMPLEMENTATION

A. Watermarking Parameters

The choice of watermarking parameters 〈o, T, S, w〉, in
addition to their secrecy, is crucial to watermarking when
dealing with sophisticated attackers trying to defeat the method
through techniques such as timing analysis [26]. In fact,
the interval-based watermarking technique can be configured
in various ways depending on the following performance
goals: 1) robustness against active/passive transformations of
the watermark, which may interfere with correct correlation,
2) efficiency in terms of number of required packets for a
successful correlation, and 3) stealthiness of the watermark
parameters, protecting them against timing analysis of an
adversary. Therefore, these parameters should be configured
in a way to balance the tradeoffs among the above three
performance goals. A general strategy in the choice of the
parameters is as follows:

• A random offset o> 0 is used for robustness, but its value
should be reasonably small for efficiency.

• A unique watermark string w of length l > 0 should be
long enough for robustness, avoiding any false correla-
tion, but short enough for efficiency.

• An interval length T > 0 should be long enough for
robustness and short enough for stealthiness since packet
timing is adjusted with a maximum delay of d= T . For
increased stealthiness and robustness, the interval length
can be randomized for each different watermark bit.

• An interval selection function S should be able to provide
randomness in its selection of the watermark embedding
interval pairs for both robustness and stealthiness. Addi-
tionally, it should be able to minimize the total number of
required packets without affecting the other performance
factors.

For an example, to minimize the number of required pack-
ets, S can select every second and third intervals as the
embedding interval pairs, starting from an offset o. For an
l-bit watermark without a redundancy (r =1), this requires a
total of 3l intervals and each watermark bit does not interfere
with others. Now the redundancy can be implemented by
repeating the whole watermark string one after another. This
particular scheme is very effective since the redundancy, hence
the confidence in the result, can be increased dynamically as
a watermark is encoded/decoded iteratively, adapting to the
availability of the packets of a given flow. To further improve
stealthiness, the watermark bit sequence is randomized at each
iteration. With the random bit ordering and the random interval
length, it would be difficult for an adversary to infer the
parameters, even if S is known to him.

B. Watermark Encoding/Decoding Procedures

Having the parameters 〈o, T, S, w〉, specified as suggested
above, an encoding procedure is quite simple. Let intervals
Ii,j,1 denote non-embedding intervals preceding embedding
interval pairs denoted as Ii,j,2 and Ii,j,3 for a jth bit of an
l-bit watermark (denoted as wj) in an ith repetition of a
total redundancy r. Then, a watermark w is encoded into an
upstream flow F through a procedure as follows.

Watermark encoding procedure:

1) For each incoming packet Pk of F , identify its interval
index (> 1) using the interval selection function S, the
interval length T , and the offset o.

2) Delay Pk by an amount of T if:
• Pk belongs to Ii,j,1 and wj indicates a ‘0’.
• Pk belongs to Ii,j,2 and wj indicates a ‘1’.
• Pk belongs to Ii,j,3 and wj indicates a ‘0’.

If Pk is to be delayed into a new interval, past the
interval boundary, the intended delay should be reduced
by an random amount, such that the reduced delay still
places the packet in the new interval.

3) Otherwise, add a minimal delay (e.g., 5ms.) to Pk, if
its inter-packet delay with Pk−1 is to be to small.

In step 2), the delays are randomized with a maximum value
of T to increase the stealthiness of the watermark parameters.
In addition, the last step helps to avoid unintended repacketi-
zation of two packets, whose inter-packet delay became very
close (< 5ms.) as a result of the timing adjustment of the first
packet.

Now, a decoder with the same parameters used to encode
w is able to decode a watermark w′ from a downstream flow
F ′ and match it against w. Let xi,j,2 and xi,j,3 be packet
counts in Ii,j,2 and Ii,j,3, respectively. In addition, let o′ be
a decoder’s offset and w′i be a decoded watermark after ith
repetition of r, with w′i,j denoting its jth bit. Furthermore, let
H(w′, w) represent a Hamming distance between w′ and w.
The decoding procedure is as follows.

Watermark decoding procedure:

1) Set the initial decoder’s offset o′ to o− |δ|, where |δ|
indicates a maximum clock discrepancy between an
encoder and a decoder. Then, (o− 2|δ|) 6 o′ 6 o.

2) For each incoming packet Pk of F ′, identify its interval
index (> 1) using the interval selection function S, the
interval length T , and the offset o′.

3) For each of the embedding interval pairs Ii,j,2 and Ii,j,3,
compute xi,j,2 and xi,j,3, respectively.

4) After completion of each ith repetition of r for every
watermark bits, compute Xi,j,2 = i−1

∑i
u=1 xu,j,2 and

Xi,j,3 = i−1
∑i

u=1 xu,j,3, and then compute a water-
mark w′i of the ith redundancy:

• w′i,j is set to ‘0’ whenever Xi,j,2 > Xi,j,3.
• w′i,j is set to ‘1’ whenever Xi,j,2 < Xi,j,3.
• Otherwise, w′i,j is set to w′i−1,j for i> 1

(w′1,j =‘0’).

Compare w′i with w and report a positive detection of the
watermark w if the Hamming distance H(w′i, w) 6 h
(0 6 h < l), where h is a decoding threshold. Continue
until rth repetition or the end of the flow.

5) In the case of a negative result at the end of step 4),
repeat from step 2), incrementing o′ by v (0 < v < T).

The last step is required for synchronizing the intervals. This
self-synchronization process not only obviates precise clock
synchronization between the watermark encoder and decoder,
but also is able to self-synchronize to an offset that decodes
the closest matching watermark, even in the presence of
random timing perturbation, shifting the intervals along with
the delayed packets. In a real-time system, each trial with
different offsets can be performed in parallel.

A decoding threshold h is used to filter out any noise in the
process. Although a higher threshold increases the detection
rate (the possibility of correctly identifying a connection flow
as being watermarked with w), it also increases the false
positive rate (the possibility of falsely identifying a connection
flow as being watermarked with w). It is suggested that h be
chosen to balance the tradeoff between the detection rate and
the false positive rate [11], [12].

VI. EXPERIMENTS

We implemented a real-time watermarking system to em-
pirically evaluate the effectiveness of the new watermarking
technique on a real network. The proposed method was imple-
mented on Linux systems following the guidelines described in
section V-A. The observation and manipulation of the packet
streams were handled using netfilter iptables [27].

In order to create the effect of transformations at the
stepping stones, a small network of 3 hosts was set up as
shown in Fig. 3. The Encoder/Decoder implemented the
encoding/decoding procedures described in section V-B. The
Perturber simulated a set of stepping stones that may trans-
form flows through timing perturbation and repacketization.
Note that, the repacketization occurred as per the standard net-
work protocols (tcp and ssh), whereas the timing perturbation
was generated by a user application.

Perturber DecoderEncoder

w w'

Fig. 3. Illustration of the experimental network set-up.

In each experiment, the Decoder generated a series of
synthetic SSH interactive flows, using tcplib [24], connect-
ing to the Encoder. We used 50 random flows, each with
at least 2000 packets and an average packet rate of 0.86
packets/second. However, these interactive traffic flows ex-
hibited the ON-OFF periods as shown in [9], [23]; 75% of the
packets had inter-arrival times less than 500ms. Hence, the
effective packet rate, defined as the total number of packets
over the packet burst time, was much higher than the average.

For each of the incoming flows, the Encoder then encoded
a randomly generated 24-bit watermark w onto the reverse
flow, destined back to the Decoder through the Perturber.
In the experiments with timing perturbation, the watermarked
flow was perturbed with random delays before being repack-
etized by the Perturber. Finally, the Decoder decoded a
watermark w′ from the incoming flow, which is then compared
against w for a match.

A detection rate was measured, at each round of repetitions
during the decoding, as the number of watermarked flows that
are correctly identified as embedding the encoded watermark,
over the total of 50 flows. Similarly, a false positive rate
was measured, for a given watermark, as the number of
unwatermarked flows that are falsely identified as embedding
the given watermark, over the 50 flows.

A. Detection Rate under an Ideal Condition

In the first experiment, the watermark detection rate was
evaluated when there was no timing perturbation, although
repacketization may still occur. This experiment used an inter-
val length of T = 900ms, which achieved a redundancy up to
r =20, using an average of 1200 packets. Decoding thresholds
(h) ranging from h= 3 to h =7 were used when decoding

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000 1200

Average Number of Packets Used (n)

D
et

ec
tio

n
R

at
e

h=3

h=4

h=5

h=6

h=7

Fig. 4. Detection rate comparison of different decoding thresholds (h) as a
function of the number of packets used (n). T =900ms and D = 0ms.

the watermarks. In this particular experiment, without any
timing perturbation, repacketization occurred with at most
0.3% reduction of the total number of packets.

Fig. 4 presents the detection rate as a function of the average
number of packets used (denoted as n). The result shows that
the detection rate increases, regardless of the given threshold
h, as the redundancy r (hence the packet usage n) increases,
which is consistent with the analysis in section IV. It also
shows that the new watermarking technique is very effective,
even in the presence of repacketization (0.3%). It requires
no more than 400 packets for a 100% detection rate in all
cases of h. Although a higher decoding threshold achieved a
higher detection rate for a given number of packets, it may
also increase the false positive rate. A separate experiment
(result not shown) demonstrated that false positive rates less
than 0.5% could only be achieved when h 6 6, in this ideal
condition.

Note that, this result is a significant improvement over the
existing two techniques ([11], [12]), which failed completely
when faced with even this degree of repacketization. Due to the
packet de-synchronization, both methods produced detection
rates lower than 1%, regardless of the amount of packets they
used.

B. Impact of Repacketization and Timing Perturbation

The following experiments evaluated the detection rate
when faced with active timing perturbation accompanied by
passive repacketization of the watermarked flow. The timing
perturbation was modeled using uniformly random delays with
a maximum value of D ranging from 0 to 2000ms. Although
longer delays could be introduced by the adversary, we believe
that a maximum of 2 seconds is the realistic limit an adversary
is able to tolerate in an interactive attack.

First, the correlation between the repacketization and the
timing perturbation was tested. For each different maximum
delays D, the repacketized packet ratio (defined as a repacke-
tization rate) was measured. The result in Fig. 5 demonstrates
that the repacketization occurs more frequently, as the delays
become more significant. The repacketization rate increases
to as high as 12% as D increases to 2000ms. However, this
trend levels off at about 10% (or D =1000ms) due to the

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Max. Timing Perturbation Delay (D) (ms)

R
ep

ac
ke

tiz
at

io
n

R
at

e

Fig. 5. Correlation between repacketization and timing perturbation. Repack-
etized packet ratio over a total of 5000 packets.

MTU and/or the given packet arrival rate explained in section
IV-B; the effective packet rate of the sample flows used in the
experiments was less than 4 packets/sec., excluding the long
OFF periods.

Then, the effect of different degrees of timing perturbation
was evaluated, along with the accompanied repacketization.
Since the timing perturbation delayed the overall packet timing
of the flow, the synchronization process (described in sec-
tion V-B) was used at the decoder to shift the interval bound-
aries along with the delayed packets. This can be achieved in
parallel using multiple iptable rules with different decoding
offsets (o′). For simplicity, offsets were added up with 60%–
80% of the maximum delay D. In this experiment, we used
an interval length T =900ms and a decoding threshold h =5.

Fig. 6(a) shows the detection rates for each different D.
It shows that, for the same number of packets used, the
detection rate decreases as D increases. Similarly, for a 100%
detection rate, the required number of packets are doubled
in the worst case. As stated in section IV-B, this occurs as
a result of timing perturbation, which shifts the watermarked
packets out of their embedding intervals, and repacketization,
which reduces the number of watermarked packets. As a result,
the packet counts of the loaded intervals are decreased, while
those of the cleared intervals are increased, decreasing their
differences. Nevertheless, detection rates higher than 90% are
achieved despite a maximum delay of 2 seconds, using only
a few hundreds of packets. In all cases, the respective false
positive rates measured no more than 1% for h 6 5 (results
not shown).

To evaluate the effectiveness of the proposed method in
relation to the repacketization, the above detection rate result
is combined with the result shown in Fig. 5. Fig. 6(b) presents
the new result, each with different number of packets used (n).
It shows that, for n =600, a 100% detection rate is maintained
up to a repacketization rate of 10.9% (D =1400ms) before
it starts to drop (though still > 90%) at higher degrees of
repacketization. However, even in such cases, the detection
rate can be increased using a higher redundancy, i.e., more
packets (n > 600). Note that this result accounts for the
repacketization caused by timing delays of low data rate
traffic (0.86 packets/sec.), which is more challenging than

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000 1200

Average Number of Packets Used (n)

D
et

ec
tio

n
R

at
e

D=0ms

D=400ms

D=800ms

D=1200ms

D=1400ms

D=1600ms

D=2000ms

(a) Various degrees of timing perturbation. T =900ms and h =5.

0.0

0.2

0.4

0.6

0.8

1.0

10.0 10.2 10.4 10.6 10.8 11.0 11.2 11.4 11.6 11.8

Repacketization Percentage (%)
D

et
ec

tio
n

R
at

e

n=400

n=600

n=800

n=1000

(b) Detection rate vs. repacketization rate. T =900ms and h =5.

Fig. 6. Detection rate under timing perturbation and repacketization.

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000 1200

Average Number of Packets Used (n)

D
et

ec
tio

n
R

at
e

T=500ms

T=700ms

T=900ms

T=1100ms

T=1300ms

Fig. 7. Detection rate comparison of different interval lengths (T).
D =1000ms (10.5% repacketization) and h =5.

repacketization of higher rate traffic. In the latter case, where
the repacketization occurs more frequently with even small
delays (less packet shifting across intervals), our technique
is able to deal with more aggressive repacketization rates, as
shown in the analysis (5). In fact, for a fixed maximum timing
perturbation, this method is more effective on traffic with a
higher data rate.

To further investigate the effect of different interval lengths
with respect to the timing perturbation, the detection rate
was evaluated using different interval lengths T , ranging
from 500ms to 1300ms, for a fixed timing perturbation of
D =1000ms (10.5% repacketization). The result in Fig. 7
demonstrates that the detection rate is proportional to T .

Especially, the performance gain becomes significant when the
interval length T is small (e.g., T =500ms), which validates
the analysis. On the other hand, when T is not so much smaller
than D, then the benefit of using larger interval length becomes
minimal, which suggests using a smaller T for the sake of
stealthiness.

VII. CONCLUSION AND FUTURE DIRECTION

Interactive traffic that traverses stepping stones is com-
monly subject to repacketization at the stepping stones, which
changes the packet counts of the traffic flows as well as the
timing characteristics. Any connection correlation technique
that relies on accurate packet synchronization may hence fail
due to packet de-synchronization. In this paper, we presented
a new approach of correlating stepping stone connections so
as to trace them back to their origin, even in the presence
of timing perturbation and repacketization. This approach
is based on actively manipulating the packet timing of an
upstream flow for the purpose of embedding a watermark that
is to be identified in the downstream flows. It utilizes time
intervals for synchronization and exploits packet counts of the
intervals for embedding the watermark.

The paper presented a theoretical model for the proposed
watermarking technique and analyzed its effectiveness. It also
identified performance tradeoffs among robustness, efficiency,
and stealthiness, and introduced a general framework for im-
plementing the method based on these tradeoffs. The real-time
experiments using synthetically-generated SSH traffic flows
demonstrated that the method is highly effective, producing
100% detection rates and less than 1% false positive rates
using fewer than 1000 packets, despite 2 seconds of maximum
timing perturbation and 12% repacketization at the stepping
stones.

Although this new technique provides robustness against
packet count transformation, there are other challenges that
have not been addressed in this paper. Our future work will
address transformations, such as adding chaff packets into a
flow or, splitting/merging of flows. We will also investigate
the robustness and stealthiness of our method against potential
timing analysis. In addition to these countermeasures, we also
need to work on scalability issues for a practical deployment
of the proposed method.

REFERENCES

[1] W. T. Strayer, C. E. Jones, I. Castineyra, J. B. Levin, and R. R. Hain,
“An Integrated Architecture for Attack Attribution,” BBN Technologies,
10 Moulton Street, Cambridge, MA 02138, Tech. Rep. BBN REPORT-
8384, Dec. 2003.

[2] L. T. Heberlein and M. Bishop, “Attack Class: Address Spoofing,” in
Proc. of the 19th National Information Systems Security Conference
(NISSC), Oct. 1996, pp. 371–377.

[3] S. Staniford-Chen and L. T. Heberlein, “Holding Intruders Accountable
on the Internet,” in Proc. of the 1995 IEEE Symposium on Security and
Privacy (S&P), May 1995, pp. 39–49.

[4] D. Goldschlag, M. Reed, and P. Syverson, “Onion Routing for Anony-
mous and Private Internet Connections,” Communications of the ACM,
vol. 42, no. 3, pp. 39–41, Feb. 1999.

[5] T. Ylonen, “The Secure Shell (SSH) Protocol Architecture,” IETF
RFC:4251, Jan. 2006. [Online]. Available: http://www.ietf.org/rfc/
rfc4251.txt

[6] S. Savage, D. Wetherall, A. R. Karlin, and T. Anderson, “Practical
Network Support for IP Traceback,” in Proc. of ACM SIGCOMM, Sep.
2000, pp. 295–306.

[7] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchakountio,
B. Schwartz, S. T. Kent, and W. T. Strayer, “Hash-Based IP Traceback,”
in Proc. of ACM SIGCOMM, Sep. 2001, pp. 3–14.

[8] D. L. Donoho, A. G. Flesia, U. Shankar, V. Paxson, J. Coit, and
S. Staniford, “Multiscale Stepping-Stone Detection: Detecting Pairs of
Jittered Interactive Streams by Exploiting Maximum Tolerable Delay,”
in Proc. of the 5th International Symposium on Recent Advances in
Intrusion Detection (RAID), Oct. 2002, pp. 17–35.

[9] Y. Zhang and V. Paxson, “Detecting Stepping Stones,” in Proc. of the
9th USENIX Security Symposium, Aug. 2000, pp. 171–184.

[10] A. Blum, D. X. Song, and S. Venkataraman, “Detection of Interactive
Stepping Stones: Algorithms and Confidence Bounds,” in Proc. of the
7th International Symposium on Recent Advances in Intrusion Detection
(RAID), Oct. 2004, pp. 258–277.

[11] X. Wang and D. S. Reeves, “Robust Correlation of Encrypted Attack
Traffic through Stepping Stones by Manipulation of Interpacket Delays,”
in Proc. of the 10th ACM conference on Computer and Communications
Security (CCS), Oct. 2003, pp. 20–29.

[12] X. Wang, S. Chen, and S. Jajodia, “Tracking Anonymous Peer-to-Peer
VoIP Calls on the Internet,” in Proc. of the 12th ACM conference on
Computer and Communications Security (CCS), Nov. 2005, pp. 81–91.

[13] J. Postel, “Transmission Control Protocol,” IETF RFC:793, Sep. 1981.
[Online]. Available: http://www.ietf.org/rfc/rfc793.txt

[14] X. Wang, D. S. Reeves, S. F. Wu, and J. Yuill, “Sleepy Watermark
Tracing: An Active Network-Based Intrusion Response Framework,”
in Proc. of the 16th International Conference on Information Security
(IFIP/Sec), Jun. 2001, pp. 369–384.

[15] K. Yoda and H. Etoh, “Finding a Connection Chain for Tracing
Intruders,” in Proc. of the 6th European Symposium on Research in
Computer Security (ESORICS), Oct. 2000, pp. 191–205.

[16] X. Wang, D. S. Reeves, and S. F. Wu, “Inter-Packet Delay Based Corre-
lation for Tracing Encrypted Connections through Stepping Stones,” in
Proc. of the 7th European Symposium on Research in Computer Security
(ESORICS), Oct. 2002, pp. 244–263.

[17] L. Zhang, A. Persaud, A. Johnson, and Y. Guan, “Stepping Stone Attack
Attribution in Non-Cooperative IP Networks,” Iowa State University,
Tech. Rep. TR-2005-02-1, Feb. 2005.

[18] P. Peng, P. Ning, D. S. Reeve, and X. Wang, “Active Timing-Based
Correlation of Perturbed Traffic Flows with Chaff Packets,” in Proc. of
the 2nd International Workshop on Security in Distributed Computing
Systems (SDCS), Jun. 2005, pp. 107–113.

[19] M. Arnold, M. Schmucker, and S. D. Wolthusen, Techniques and Appli-
cations of Digital Watermarking and Content Protection, ser. Computer
Security. Boston: Artech House, 2003.

[20] B. Chen and G. W. Wornell, “Quantization Index Modulation: A Class
of Provably Good Methods for Digital Watermarking and Information
Embedding,” IEEE Transaction on Information Theory, vol. 47, no. 4,
pp. 1423–1443, May 2001.

[21] W. Bender, D. Gruhl, N. Morimoto, and A. Lu, “Techniques for Data
Hiding,” IBM Systems Journal, vol. 35, no. 3 & 4, pp. 313–336, 1996.

[22] G. Langelaar, J. van der Lubbe, and J. Biemond, “Copy Protection
for Multimedia Data based on Labeling Techniques,” in Proc. of the
17th Symposium on Information Theory in the Benelux, Enschede, The
Netherlands, May 1996, pp. 33–39.

[23] V. Paxson and S. Floyd, “Wide-Area Traffic: The Failure of Poisson
Modeling,” IEEE/ACM Transactions on Networking, vol. 3, no. 3, pp.
226–244, Jun. 1995.

[24] P. B. Danzing and S. Jamin, “tcplib: A Library of TCP Internetwork
Traffic Characteristic,” Computer Science Department, University of
Southern California, Report CS-SYS-91-01, 1991.

[25] D. D. Wackerly, W. Mendenhall III, and R. L. Scheaffer, Mathematical
Statistic with Application, 6th ed. Duxbury, 2002.

[26] P. Peng, P. Ning, and D. S. Reeves, “On the Secrecy of Timing-Based
Active Watermarking Trace-Back Techniques,” in Proc. of the 2006
IEEE Symposium on Security and Privacy (S&P), May 2006, pp. 334–
349.

[27] Netfilter iptables. [Online]. Available: http://www.netfilter.org

