A First Step Toward Live Botmaster Traceback

Daniel Ramsbrock, Xinyuan Wang Xuxian Jiang

Department of Computer Science Department of Computer Science

George Mason University North Carolina State University
Fairfax, VA 22030, USA Raleigh, NC 27606, USA
{dramsbro, xwangc}@Qgmu.edu jiang@Qcs.ncsu.edu

Abstract. Despite the increasing botnet threat, research in the area
of botmaster traceback is limited. The four main obstacles are 1) the
low-traffic nature of the bot-to-botmaster link; 2) chains of “stepping
stones;” 3) the use of encryption along these chains; and 4) mixing with
traffic from other bots. Most existing traceback approaches can address
one or two of these issues, but no single approach can overcome all of
them. We present a novel flow watermarking technique to address all four
obstacles simultaneously. Our approach allows us to uniquely identify
and trace any IRC-based botnet flow even if 1) it is encrypted (e.g.,
via SSL/TLS); 2) it passes multiple intermediate stepping stones (e.g.,
IRC server, SOCKs); and 3) it is mixed with other botnet traffic. Our
watermarking scheme relies on adding padding characters to outgoing
botnet C&C messages at the application layer. This produces specific
differences in lengths between randomly chosen pairs of messages in a
network flow. As a result, our watermarking technique can be used to
trace any interactive botnet C&C traffic and it only requires a few dozen
packets to be effective. To the best of our knowledge, this is the first
approach that has the potential to allow real-time botmaster traceback
across the Internet.

We have empirically validated the effectiveness of our botnet flow water-
marking approach with live experiments on PlanetLab nodes and public
IRC servers on different continents. We achieved virtually a 100% detec-
tion rate of watermarked (encrypted and unencrypted) IRC traffic with
a false positive rate on the order of 107°. Due to the message queu-
ing and throttling functionality of IRC servers, mixing chaff with the
watermarked flow does not significantly impact the effectiveness of our
watermarking approach.

1 Introduction

Botnets are currently one of the most serious threats to computers connected
to the Internet. Recent media coverage has revealed many large-scale botnets
worldwide. One botnet [22, 23] has reportedly compromised and controlled over
400,000 computers — including computers at the Weapons Division of the U.S.
Naval Air Warfare Center, U.S. Department of Defense Information Systems
Agency. Another recently discovered botnet is suspected to have controlled 1.5
million computers around the globe [9]. It has been estimated [20] that more than

5 percent of all computers connected to the Internet have been compromised and
used as bots. Currently, botnets are responsible for most spam, adware, spyware,
phishing, identity theft, online fraud and DDoS attacks on the Internet.

The botnet problem has recently received significant attention from the re-
search community. Most existing work on botnet defense [1-3,6,11, 14,15, 18]
has focused on the detection and removal of command and control (C&C) servers
and individual bots. While such a capability is a useful start in mitigating the
botnet problem, it does not address the root cause: the botmaster. For exam-
ple, existing botnet defense mechanisms can detect and dismantle botnets, but
they usually cannot determine the identity and location of the botmaster. As a
result, the botmaster is free to create and operate another botnet by compro-
mising other vulnerable hosts. Botmasters can currently operate with impunity
due to a lack of reliable traceback mechanisms. However, if the botmaster’s risk
of being caught is increased, he would be hesitant to create and operate botnets.
Therefore, even an imperfect botmaster traceback capability could effectively
deter botmasters. Unfortunately, current botmasters have all the potential gains
from operating botnets with minimum risk of being caught. Therefore, the bot-
net problem cannot be solved until we develop a reliable method for identifying
and locating botmasters across the Internet. This paper presents a substantial
first step towards achieving the goal of botmaster traceback.

Tracking and locating the botmaster of a discovered botnet is very challeng-
ing. First, the botmaster only needs to be online briefly to issue commands or
check the bots’ status. As a result, any botmaster traceback has to occur in real-
time. Second, the botmaster usually does not directly connect to the botnet C&C
server and he can easily launder his connection through various stepping stones.
Third, the botmaster can protect his C&C traffic with strong encryption. For
example, Agobot has built-in SSL/TLS support. Finally, the C&C traffic from
the botmaster is typically low-volume. As a result, a successful botmaster trace-
back approach must be effective on low-volume, encrypted traffic across multiple
stepping stones.

To the best of our knowledge, no existing traceback methods can effectively
track a botmaster across the Internet in real-time. For example, methods [33,
32,8,31,4,29,30] have been shown to be able to trace encrypted traffic across
various stepping stones and proxies, but they need a large amount of traffic (at
least hundreds of packets) to be effective. During a typical session, each bot
exchanges only a few dozen packets with the botmaster. Due to this low traffic
volume, the above techniques are not suitable for botmaster traceback.

In this paper, we address the botmaster traceback problem with a novel
packet flow watermarking technique. Our goal is to develop a practical solution
that can be used to trace low-volume botnet C&C traffic in real-time even if
it is encrypted and laundered through multiple intermediate hosts (e.g., IRC
servers, stepping stones, proxies). We assume that the tracer has control of a
single rogue bot in the target botnet, and this bot can send messages in re-
sponse to a the query from the botmaster. To trace the response traffic back to
the botmaster, the rogue bot transparently injects a unique watermark into its

response. If the injected watermark can survive the various transformations (e.g.,
encryption/decryption, proxying) of the botnet C&C traffic, we can trace the
watermark and locate the botmaster via monitoring nodes across the Internet.
To embed the watermark, we adjust the lengths of randomly selected pairs of
packets such that the length difference between each packet pair will fall within a
certain range. To track encrypted botnet traffic that mixes messages from multi-
ple bots, we developed a hybrid length-timing watermarking method. Compared
to previous approaches [31,29,30], our two proposed methods require far less
traffic volume to encode high-entropy watermarks. We empirically validated the
effectiveness of our watermarking algorithms using real-time experiments on live
IRC traffic through PlanetLab nodes and public IRC servers across different
continents. Both of our watermarking approaches achieved a virtually 100% wa-
termark detection rate and a 107° false positive rate with only a few dozen
packets. To the best of our knowledge, this is the first approach that has the
potential to allow real-time botmaster traceback across the Internet.

The remainder of the paper is structured as follows: Section 2 introduces
the botmaster traceback model. Section 3 presents the design and analysis of
our flow watermarking schemes. Section 4 describes our experiments and their
results, while section 5 discusses limitations and future work. Finally, Section 6
surveys related literature and Section 7 summarizes our findings.

2 Botmaster Traceback Model

According to [17,21,28], most botnets currently in the wild are IRC-based.
Therefore, we will focus on tracing the botmaster in the context of TRC-based
botnets. Nevertheless, our flow watermarking trace approach is applicable to any
interactive botnet traffic.

2.1 Botnets and Stepping Stones

Bots have been covered extensively in the existing literature, for example [2, 6, 7,
16, 21] provide good overviews. The typical bot lifecycle starts with exploitation,
followed by download and installation of the bot software. At this point, the bot
contacts the central C&C server run by the botmaster, where he can execute
commands and receive responses from his botnet.

Botmasters rarely connect directly to their C&C servers since this would
reveal their true IP address and approximate location. Instead, they use a chain
of stepping stone proxies that anonymously relay traffic. Popular proxy software
used for this purpose is SSH, SOCKS, and IRC BNCs (such as psyBNC). Since
the stepping stones are controlled by the attacker, they do not have an audit
trail in place or other means of tracing the true source of traffic. However, there
are two properties of stepping stones that can be exploited for tracing purposes:
1) the content of the message (the application-layer payload) is never modified
and 2) messages are passed on immediately due to the interactive nature of IRC.
Consequently, the relative lengths of messages and their timings are preserved,

even if encryption is used. In the case of encryption, the message lengths are
rounded up to the nearest multiple of the block size. This inherent length and
timing preservation is the foundation of our botmaster traceback approach.

2.2 Tracking the Botmaster by Watermarking Botnet Traffic

Our botmaster traceback approach exploits the fact that the communication
between the TRC-based bots and the botmaster is bidirectional and interactive.
Whenever the botmaster issues commands to a bot, the response traffic will
eventually return to the botmaster after being laundered and possibly trans-
formed. Therefore, if we can watermark the response traffic from a bot to the
botmaster, we can eventually trace and locate the botmaster. Since the response
traffic we are tracking may be mixed with other IRC traffic, we need to be able
to isolate the target traffic. With unencrypted traffic, this can be achieved by
content inspection, but encrypted traffic presents a challenge which we address
with our hybrid length-timing algorithm.

WM Proxy Botmaster

, _Watermark - Monitors @g
©) Z
'Q—o

Proxy 2
C&C Server Proxy1 0)
O

Rogue Bot

Internet

Fig. 1. Botmaster traceback by watermarking the botnet response traffic.

Figure 1 shows the overall watermarking traceback model. We assume that we
control a rogue bot, which could be a honeypot host that has been compromised
and has joined a botnet. The rogue bot watermarks its outgoing PRIVMSG
traffic in response to commands from the botmaster. As with any traceback ap-
proach, our watermark tracing scheme needs support from the network. Specifi-
cally, we assume there are cooperating monitor nodes across the Internet, which
will inspect the passing traffic for the specified watermark and report back to us
whenever they find it. Note that our approach does not require a global moni-
toring capability. If there are uncooperative or unmonitored areas, we would lose
one or more links along the traceback path. However, we can pick up the trail
again once the watermarked traffic re-enters a monitored area. In general, this
appears to be the best possible approach in the absence of a global monitoring

capability. We assume that the tracer can securely share the desired watermark
with all monitor nodes prior to sending the watermarked traffic. This enables the
monitors to report ‘sightings’ of the watermark in real-time and requires only a
single watermarked flow to complete the trace.

3 Length-Based Watermarking Scheme

Our watermarking scheme was specifically designed for a low-traffic, text-based
channel such as the one between a bot and its botmaster. This section describes
the design and analysis of both the length-only (unencrypted traffic) and the
length-timing hybrid algorithms (encrypted traffic). We describe the encoding
and decoding formulas for both algorithms and address the issue of false positives
and false negatives.

The terms ‘message’ and ‘packet’ are used interchangeably since a typical
botnet C&C message is usually small (less than 512 bytes) and fits into a single
packet).

3.1 Basic Length-Based Watermarking Scheme

Watermark Bit Encoding Given a packet flow f of n packets Pi,..., P,, we
want to encode an [-bit watermark W = wy, ..., w;_1 using 21 < n packets. We
first use a pseudo-random number generator (PRNG) with seed s to randomly
choose 2[distinct packets from Py, ..., P,, we then use them to randomly form
I packet pairs: (P, P.,) (¢ = 0,...,0 — 1) such that r; < e;. We call packet
P, a reference packet and packet P, an encoding packet. We further use the
PRNG to randomly assign watermark bit wy (0 < k <[—1) to packet pair (P,
P,,), and we use (r;, e;, k) to represent that packet pair (P,,, P.,) is assigned to
encode watermark bit wy,.

To encode the watermark bit wy, into packet pair (P.,, P.,), we modify the
length of the encoding packet P., by adding padding characters to achieve a
specific length difference to its corresponding reference packet P,,. The padding
characters could be invisible (such as whitespace) or visible characters and they
can be inserted in random locations within the message. This would make it
difficult for the adversary to detect the existence of the padding. Let I, and [, be
the packet lengths of the watermark encoding and reference packets respectively,
Z =l — 1, be the length difference, and L > 0 be the bucket size. We define the
watermark bit encoding function as

e(lyyley Lyw) =1+ [(0.5+w)L — (I — 1)) mod 2L (1)

which returns the increased length of watermark encoding packet given the
length of the reference packet I,., the length of the encoding packet ., the bucket
size L, and the watermark bit to be encoded w.

Therefore,

(e (lr, le, Lyw) — 1) mod 2L (2)

={(e—1)+[05+w)L — (Il — ;)] mod 2L} mod 2L
= {(0.5+w)L} mod 2L
= (w+0.5)L

This indicates that the packet length difference Z = I, —I,., after [, is adjusted
by the watermark bit encoding function e(l,, l., L, w), falls within the middle of
either an even or odd numbered bucket depending on whether the watermark
bit w is even or odd.

Watermark Bit Decoding Assuming the decoder knows the watermarking
parameters: PRNG, s, n, [, W and L, the watermark decoder can obtain the
exact pseudo-random mapping (r;, e;, k) as that used by the watermark encoder.
We use the following watermark bit decoding function to decode watermark bit
wy, from the packet lengths of packets P, and P,

le — 1,

d(ly, 1o, L) = | | mod 2 (3)

The equation below proves that any watermark bit w encoded by the encod-
ing function defined in equation (1) will be correctly decoded by the decoding
function defined in equation (3).

d(lT‘7€(lT’7le;L?w)7L) (4)
ralevLy _lr
_ e L“’) | mod 2
L(le —1,) mod 2L + [(0.5 + w)L — (I. — 1,,)] mod 2L
L

| mod 2

(05 +w)L
= LTJ mod 2

= w

Assume the lengths of packets P, and P. (I, and [.) have been increased
for z, > 0 and z. > 0 bytes respectively when they are transmitted over the
network (e.g., due to padding of encryption), then z, — x, is the distortion over
the packet length difference I, — I,.. Then the decoding with such distortion is

d(ly + 2, e(lp, le, Lyw) + 2, L) (5)
_ LG(ZT7 lea L,'ZU) — l?" + (Ie
h L
=w+ 05+ a:e—xTJ mod 2

IT)J mod 2

Therefore, the decoding with distortion will be correct if and only if

(—0.5+ 2)L < 2o — 2 < (0.5 + 24)L (6)

Specifically, when the magnitude of the distortion |z, —x,| < 0.5L, the decoding
is guaranteed to be correct.

Watermark Decoding and Error Tolerance Given a packet flow f and
appropriate watermarking parameters (PRNG, s, n, I, W and L) used by the
watermark encoder, the watermark decoder can obtain a [-bit decoded water-
mark W’ using the watermark bit decoding function defined in equation (3). Due
to potential distortion of the packet lengths in the packet flow f, the decoded W’
could have a few bits different from the encoded watermark W. We introduce
a Hamming distance threshold A > 0 to accommodate such partial corruption
of the embedded watermark. Specifically, we will consider that packet flow f
contains watermark W if the Hamming distance between W and W': H(W, W')
is no bigger than h.

Watermark Collision Probability (False Positive Rate) No matter what
watermark W and Hamming distance threshold h we choose, there is always
a non-zero possibility that the decoding W' of a random unwatermarked flow
happens to have no more than h Hamming distance to the random watermark
W we have chosen. In other words, watermark W is reported found in an unwa-
termarked flow; we refer to this case as a watermark collision.

Intuitively, the longer the watermark and the smaller the Hamming distance
threshold, the smaller the probability of a watermark collision. Assume we have
randomly chosen a [-bit watermark, and we are decoding [-bits from random
unwatermarked flows. Any particular bit decoded from a random unwatermarked
flow should have 0.5 probability to match the corresponding bit of the random
watermark we have chosen. Therefore, the collision probability of I-bit watermark
from random unwatermarked flows with Hamming distance threshold h is

b 1 l
> (1)) @

We have empirically validated the watermark collision probability distribu-
tion with the following experiment. We first use a PRNG and a random seed
number s to generate 32 packet pairs (r;,e;) and pseudo-randomly assign each
bit of a 32-bit watermark W to the 32 packet pairs, we then encode the 32 bit wa-
termark W into a random packet flow f. Now we try to decode the watermarked
flow f’ with 1,000 wrong seed numbers. Given the pseudo-random nature of our
selection of the packet pairs, decoding a watermarked flow with the wrong seed
is equivalent of decoding an unwatermarked flow, which can be used to measure
the watermark collision probability.

The left side of Figure 2 illustrates the number of matched bits from the
decoding with each of the 1,000 wrong seed numbers. It shows that the numbers

Decoding with Incorrect PRNG Seed Values Distribution of Correct Bits

32 } } } } } } } } } 180
160
~ 28 S
2 S 140 |
Qg S 120 +
g E 100 |
2 s 80t
A 3
bS] L B T A 4] g 60 |
O -
g 87 Threshold —— |1 5§ 40 |
O 4 L Average 8 20 L
Correct
0 : : : : : ; 0 e
0 100 200 300 400 500 600 700 800 900 100(8§ 12 16 20 24
1000 Random Seed Values Correct Bits (out of 32)
(a) (b)

Fig. 2. 32-bit watermark collision probability and distribution

of matched bits are centered around the expected value of 16 bits, which is half
of the watermark length. Based on these results and the experimental data in
Section 4.2, we can choose a Hamming distance threshold of h = 4 (28 bits) as
shown on the graph, yielding an expected false positive rate (FPR) of 9.64 x 10~6
according to equation (7). The right side of Figure 2 shows the distributions of
the measured and the expected number of matched bits. It illustrates that the
distribution of the measured number of matched bits is close to the expected
binomial distribution with p = 0.5 and n = 32.

Watermark Loss (False Negative) Our length-only encoding scheme (with-
out the hybrid timing approach) is highly sensitive to having the correct sequence
of messages. If any messages are added or deleted in transit, the watermark will
be lost in that flow. However, the chance of this happening is very remote since
the encoding takes place at the application layer, on top of TCP. By its na-
ture, TCP guarantees in-order delivery of all packets and their contents, so a
non-intentional watermark loss is very unlikely.

In the case of active countermeasures, our scheme can tolerate distortion as
long as |z, — 2| < 0.5L, as described by inequality (6). This property is the
result of aiming for the center of each bucket when encoding. However, if an
active adversary drops, adds, or reorders messages, the watermark will be lost
unless additional redundancy is in place or the length-timing algorithm is used.

3.2 Hybrid Length-Timing Watermarking for Encrypted Traffic

By their nature, IRC-based botnets have many bots on one channel at once,
many of them joining, parting, or sending data to the botmaster simultaneously.
In this case, the watermarked messages from our rogue bot will be mixed with

unwatermarked messages from other bots. We call these unwatermarked mes-
sages from others chaff messages. In order to reliably decode the embedded
watermark, we need to filter out chaff messages as much as possible.

When the C&C traffic is unencrypted, it is easy for the watermark decoder
to filter out chaff based on the sender nicks in the messages. However, if the
traffic is encrypted (e.g., using SSL/TLS), we cannot rely on content inspection
to identify chaff messages. To address this new challenge in filtering out chaff,
we propose to use another dimension of information — the packet timing — to
filter out chaff.

The basic idea is to send the watermark encoding packets at a specific time
(e.g., t;). Assuming the network jitter ¢ is limited, we can narrow the range of
potential packets used for decoding to [t., — g, te, + g] If 6 > 0 is small, then the
chances that some chaff packet happens to fall within the range [t., — g, te, + g]
is small. This means we can decode the watermark correctly even if there are
substantial encrypted chaff packets.

Watermark Encoding The watermark bit encoding process is exactly the
same as that of the basic length-based watermarking scheme. The difference is
that now we send out each watermarked packet P,, at a precise time. Specifically,
we use the watermark bit encoding function defined in equation (1) to adjust the
length of the watermark encoding packet P.,. We use a pseudo-random number
generator PRNG and seed s; to generate the random time t., at which P, will
be sent out.

An implicit requirement for the hybrid length-timing watermarking scheme
is that we need to know when each watermark encoding packet P., will be
available. In our watermark tracing model, the tracer owns a rogue bot who can
determine what to send out and when to send it. Since we have full control over
the outgoing traffic, we can use the hybrid length-timing scheme to watermark
the traffic in real-time.

Watermark Decoding When we decode the encrypted botnet traffic, we do
not know which packet is a watermark encoding packet P.,. However, given the
PRNG and s; we do know the approximate time t., at which the watermark
encoding packet P, should arrive. We then use all packets in the time interval
[te; — 3.te, + 2] to decode. Specifically, we use the sum of the lengths of all
the packets in the time interval [t., — 3, t., + 2] as the length of the watermark
encoding packet and apply that to the watermark bit decoding function (3).
Due to network delay jitter and/or active timing perturbation by the adver-
sary, the exact arrival time of watermark encoding packet P, may be differ-
ent from t.,. Fortunately, the decoding can self-synchronize with the encoding
by leveraging an intrinsic property of our hybrid length-timing watermarking
scheme. Specifically, if the decoding of a watermarked flow uses the wrong offset
or wrong seeds (s and s;), then the decoded I-bit watermark W' will almost
always have about é bits matched with the true watermark W. This gives us an

easy way to determine if we are using the correct offset, and we can try a range
of possible offsets and pick the best decoding result.

4 Implementation and Experiment

To validate the practicality of our watermarking scheme, we implemented both
the length-only algorithm (unencrypted traffic) and the length-timing hybrid
algorithm (encrypted traffic). To let our watermarking proxy interact with a
realistic but benign IRC bot, we obtained a sanitized version of Agobot from
its source code, containing only benign IRC communication features. We ran
the sanitized Agobot on a local machine to generate benign IRC traffic to test
the effectiveness of our watermarking scheme across public IRC servers and
PlanetLab nodes. At no time did we send malicious traffic to anyone in the
course of our experiments.

4.1 Length-Only Algorithm (Unencrypted Traffic)

We implemented the length-only algorithm in a modified open-source IRC proxy
server and ran a series of experiments using the sanitized Agobot and public
Internet IRC servers. We were able to recover the watermark successfully from
unencrypted traffic in all ten of our trials.

Modified IRC Bouncer To achieve greater flexibility, we added our water-
marking functionality to an existing IRC bouncer (BNC) package, psyBNC.
Having the watermarking implemented on a proxy server allows us to use it on
all bots conforming to the standard IRC protocol. It eliminates the need to have
access to a bot’s source code to add the watermarking functionality: outgoing
traffic is modified by the BNC after the bot sends it.

In order for psyBNC to act as a transparent proxy, it needs to be configured
identically to the bot. The information required consists of the C&C server’s
hostname, the port, and an IRC nick consistent with the bot’s naming scheme.
This information can be gathered by running the bot and monitoring the outgo-
ing network traffic. In order to trick the bot into connecting to the BNC rather
than to the real C&C host, we also need to update our local DNS cache so that
a lookup of the C&C server’s hostname resolves to the IP of our BNC.

Once it has been configured with this information, the BNC is completely
transparent to the bot: when it starts up, the bot is automatically signed into
the real C&C server by the BNC. The bot now joins the botnet channel as if
it were directly connected and then waits for the botmaster’s instructions. All
PRIVMSG traffic from the bot to the C&C server (and by extension, to the
botmaster) is watermarked by the transparent BNC in between.

Experiment and Results To test our watermarking scheme, we devised an
experiment that emulates the conditions of an Internet-wide botnet as closely

10

as possible. To simulate the botmaster and stepping stones, we used PlanetLab
nodes in California and Germany. We used a live, public IRC server in Arizona
to act as a C&C host, creating a uniquely-named channel for our experiments.
Our channel consisted of two IRC users: the Test Bot was running a copy of the
sanitized Agobot and the Botmaster was acting as the botmaster (see Figure
3). As the diagram indicates, all traffic sent by the Test Bot passes through the
psyBNC server (WM Proxy) where the watermark is injected. The distances
involved in this setup are considerable: the watermarked traffic traverses liter-
ally half the globe (12 time zones) before reaching its ultimate destination in
Germany, with a combined round-trip time of 292 milliseconds on average (at
the time of our experiment).

‘ YVl T -’
Watermark

WM Proxy
Maryland
IRC Server ;
Arizona Step.Sthe
Q iCaI|forn|a

& 8.
Test Bot Botmaster

Maryland Germany

Fig. 3. Experiment setup for unencrypted traffic.

The objective is to be able to decode the full watermark in the traffic captured
at the Stepping Stone and Botmaster. Since only PRIVMSG traffic from the
Test Bot is watermarked, all other traffic (chaff) must be filtered out before
decoding. Most of this chaff consists of messages from other users on the channel,
PING/PONG exchanges, and JOIN/PART notifications from the channel. There
could be additional chaff on the same connection if the botmaster is logged into
multiple channels on the same IRC server. However, filtering out the chaff is
trivial in the absence of encryption since all IRC messages contain the sender’s
nick. Therefore, we can easily isolate the watermarked packets based on the Test
Bot’s nick.

During our experiments, the psyBNC proxy was configured to inject a 32-bit
watermark into a 64-packet stream. To generate traffic from the Test Bot, the
Botmaster logged in and issued the commands.list command, causing the bot
to send a list of all valid bot commands and their descriptions. We captured
all traffic leaving the WM Proxy, arriving at the Stepping Stone, and arriving
at the Botmaster. In ten trials with different (random) 32-bit watermarks, we
were able to correct decode the full 32-bit watermark at all three monitoring

11

locations: the WM Proxy in Maryland, the Stepping Stone in California, and
Botmaster in Germany.

4.2 Hybrid Length-Timing Algorithm (Encrypted Traffic)

To test the hybrid length-timing algorithm, we implemented a simple IRC bot
that sends length-watermarked messages out at specific intervals. We used a
“chaff bot” on the channel to generate controlled amounts of chaff. We were
able to recover the watermark with a high success rate, even when high amounts
of chaff were present.

Hybrid Length-Timing Encoder We implemented the hybrid encoding al-
gorithm as a Perl program which reads in a previously length-only watermarked
stream of messages and sends them out at specific times. To achieve highly pre-
cise timing, we used the Time: :HiRes Perl package, which provides microsecond-
resolution timers. At startup, the program uses the Mersenne Twister PRNG
(via the Math: :Random: :MT package) to generate a list of departure times for all
messages to be sent. Each message is sent at a randomly chosen time between
2 and 2.35 seconds after the previous message. The 2-second minimum spacing
avoids IRC server packet throttling (more details are discussed in Section 4.2).

Hybrid Length-Timing Decoder The hybrid decoding script was also writ-
ten in Perl, relying on the PCAP library to provide a standardized network traffic
capture mechanism (via the Net: : Pcap module). The program reads in a stream
of packets (either from a live interface or from a PCAP file), then performs a
sliding-window offset self-synchronization process to determine the time ¢1 of
the first watermarked packet. To find the correct t1, the program steps through
a range of possible values determined by the offset, max, and step parameters.
It starts with {1 =offset, incrementing ¢1 by step until {1 =(offset + max).
It decodes the full watermark sequence for each t1, recording the number of bits
matching the sought watermark W. It then chooses the t1 that produced the
highest number of matching bits. If there are multiple ¢1 values resulting in the
same number of matching bits, it uses the lowest value for ¢t1. Figure 4 illus-
trates the synchronization process, showing that the correct t1 is near 6 seconds:
5.92 sec has 32 correct bits. For all incorrect t1 values, the decoding rate was
significantly lower, averaging 14.84 correct bits.

Experiment and Results The experiment setup in this case was similar to
the unencrypted experiment described in Section 4.1. The three main differences
were: 1) a single Source computer producing watermarked traffic on its own
replaced the Test Bot and WM Proxy; 2) the connection between the Botmaster
and the IRC server (via StepStone) was encrypted using SSL/TLS; and 3) we
used a different IRC server because the one in Arizona does not support SSL/TLS
connections. The IRC server in this case happens to be located in Germany, but

12

Automatic Offset Alignment
32

~ 28 ¢

o

Y

5

é 20 M

2 léﬁgﬁ% i f f'l\‘

: wwwwv Wy

3

= 8

3

O 4 L Average i
0 ‘ Correct Bits ‘

0 1 2 3 4 5 6 7 8 9 10
Starting Offset t1 (sec)

Fig. 4. Offset Self-Synchronization via Offset Sliding-Window

not in the same place as the Botmaster. Please refer to Figure 5 for the full
experiment setup. In this configuration, the distances involved are even greater,
with the watermarked traffic traversing the equivalent of the entire globe (24
time zones). The combined round-trip time from Source to Botmaster was 482
milliseconds (on average) at the time of our experiment.

To handle encryption, the parameters for the length-only algorithm were
adjusted to ensure that the bucket size matched or exceeded the encryption
block size. Most SSL/TLS connections use a block size of 128 bits (16 bytes),
though 192 and 256 bits are also common. To ensure that each added bucket
also causes another encrypted block to be added to the message, the bucket size
has to be greater than or equal to the block size. For our experiment, we used
a bucket size of 16 bytes, which was sufficient for the 128-bit block size used in
the SSL/TLS connection. For compatibility with the larger block sizes (192 and
256 bits), a bucket size of 32 bytes can be used.

For the experiments, the Source produced a stream of 64 packets, containing
a randomly generated 32-bit watermark. The Chaff Bot produced a controlled
amount of background traffic, spacing the packets at random intervals between 1
and 6 seconds (at least 1 second to avoid throttling). In addition to our Control
run (no chaff), we ran five different chaff levels (Chaff 1 to 5). The number refers
to the maximum time between packets (not including the minimum 1-second
spacing). For example, for the Chaff 1 run, packets were sent at a random time
between 1 and 2 seconds. Thus, one packet was sent on average every 1.5 seconds,
resulting in a chaff rate of approximately 1/1.5 = 0.667 packets/sec.

We captured network traffic in three places: 1) traffic from Source and Chaff
Bot to IRC Server; 2) traffic arriving at StepStone from IRC Server; and 3) traffic
arriving at Botmaster from StepStone. Traffic in all three locations includes both
watermark and chaff packets. We decoded the traffic at each location, recording
the number of matching bits. For decoding, we used a value of 200 milliseconds
for the timing window size § and a sliding offset range from 0 to 10 seconds. This
¢ value was large enough to account for possible jitter along the stepping stone

13

Source
Maryland

IRC Server !
Germany 1 StepStone
Q palifornia

""’@sa

Botmaster
Germany 2

Chaff Bot
Maryland

Fig. 5. Experiment setup for encrypted traffic.

chain but small enough to make it unlikely that a chaff packet appears within
0 of an encoding packet. We also measured the actual chaff rate based on the
departure times of each chaff packet, and these were very close to the expected
rates based on an even distribution of random departure times. We repeated
this process three times for each chaff level, resulting in a total of 18 runs. Our
experiment results are summarized in Table 1, with each column representing
the average values from three trials.

Monitoring Location [Chaff 1 |Chaff 2 |Chaff 3 |[Chaff 4 |Chaff 5 [Control
Chaff Rate (packets/sec)| 0.6719 | 0.4976 | 0.4274 | 0.3236 | 0.2872 | no chaff

Source - Maryland 29.67 30.33 29.67 30.33 30.33 32
StepStone - California 31 32 31.67 31.67 32 32
Botmaster - Germany 31 31.67 32 31.67 31.67 32

Table 1. Experiment results for encrypted traffic: Recovered watermark bits (out of
32) at each monitoring station along the watermark’s path (averaged from three trials).

We had near-perfect decoding along the stepping-stone chain for all chaff
rates of 0.5 packets/sec and below. Only when the chaff rate rose above 0.5
packets/sec did the chaff start having a slight impact, bringing the decoding
rate down to an average of 31 bits. The overall average decoding rate at the
StepStone and Botmaster was 31.69 bits, or 99.05 percent. The lowest recorded
decoding rate during our experiments was 28 bits, so we can use a Hamming
distance threshold of h = 4 to obtain a 100 percent true positive rate (TPR)
and a false positive rate (FPR) of 9.64 x 1076.

The most surprising result is that in all cases where chaff was present, the
decoding rate was worse at the Source than downstream at the StepStone and
Botmaster. After examining the network traces in detail, we realized that this

14

behavior was due to the presence of traffic queuing and throttling on the IRC
Server. To avoid flooding, IRC servers are configured to enforce minimum packet
spacings, and most will throttle traffic at 0.5 to 1 packets/sec. To confirm this
behavior, we sent packets to the IRC Server in Germany at random intervals
of 100 to 300 milliseconds. For the first 5 seconds, packets were passed on im-
mediately, but after that the throttling kicked in, limiting the server’s outgoing
rate to 1 packet/sec. After about 2 minutes, the server’s packet queue became
full with backlogged packets, and it disconnected our client. Figure 6 illustrates
the effect of throttling on the packet arrival times, including the 5-second “grace
period” at the beginning.

Effect of IRC Server Throttling
120

Arrival -+ -
o
100 - Departure o
~ 80t
3 p
w e
o 60} o
-
=40 ¢ 1
-
+++++++**+ M
-
20 ¢ ++++**¢ B
o
o
0

0 20 40 60 80 100 120
Packet Number

Fig. 6. IRC server throttling causes packets to be spaced apart further upon arrival.

In the context of our hybrid encoding scheme, IRC message queuing is highly
beneficial because it dramatically reduces the chances that chaff and encoding
packets will appear close to each other. At the Source, packets appear at the exact
intervals they are sent, which could be less than ¢ and therefore affect decoding.
However, this interval will be increased due to queuing by the IRC server. By
the time the packets reach the StepStone and Botmaster, they no longer affect
decoding because they are more than § apart. In our experiments, we observed
that the IRC server introduced a distance of at about 130 milliseconds between
packets due to queuing. Since our ¢ value was 200 milliseconds, this made it
unlikely that two packets would arrive in the same slot.

5 Discussion and Future Work

Our experiments show that our watermarking scheme is effective in tracing the
botmaster of IRC-based botnets, which are still the predominant type in the wild
[17,21,28]. Our watermark can be recovered with a high degree of accuracy even
when the watermarked botnet C&C traffic is encrypted across multiple stepping
stones and mixed with other flows.

15

In theory, our flow watermarking technique could be applied to trace any real-
time and interactive botnet C&C traffic. Therefore, it could be used to track the
botmaster of peer-to-peer (P2P) botnets which have started appearing recently
[13]. However, HTTP-based botnets present a much higher level of traceback
difficulty: the messages do not get passed from the bot to the botmaster in real-
time. They are typically stored on the C&C server until the botmaster retrieves
them in bulk, usually over an encrypted connection such as SSH. Due to this,
any approach that relies on properties of individual packets (such as length and
timing) will be unsuccessful.

When SSH is used as the final hop in a chain of stepping stones, it presents
unique challenges. In this case, the botmaster uses SSH to log into a stepping
stone, launches a commandline-based IRC client on that host, and uses this IRC
client to connect to his botnet (possibly via more stepping stones). In this capac-
ity, SSH is not acting as a proxy, passing on messages verbatim like psyBNC or
SOCKS. Instead, it transfers the “graphical” screen updates of the running IRC
client, which is not necessarily correlated to the incoming IRC messages. This
situation is challenging for our approach because the application-layer content
is transformed, altering the relative lengths of packets. We are working on this
problem, but we have been unable to explore it in detail. Notice that if SSH is
used in a tunnelling capacity (such as port forwarding or a SOCKS proxy) in
the middle of a stepping stone chain, this limitation does not apply.

Once the botmaster become aware of the flow watermarking tracing ap-
proach, he may want to corrupt the embedded watermark from intermediate
stepping stones. However, since the padding characters could be almost any
character and they are inserted randomly in the botnet message, it would be
difficult for any intermediate stepping stone to identify and remove the padding
characters without knowing the original unwatermarked message. The botmas-
ter may be able to detect and identify the padding if he knows exactly what he
is expecting for. However, once he receives the watermarked message, the water-
marked message has already left the complete trail toward the botmaster. The
botmaster could have intermediate stepping stones to perturb the length of the
passing botnet messages by adding random padding such as white space. Since
the watermark is embedded in the length difference between randomly chosen
packets, the negative impact of the padding by the adversary tends to cancel each
other. We can further mitigate the negative impact by using redundant pairs of
packets to encode the watermark. However, this would increase the number of
packets needed. So this is essentially a tradeoff between the robustness and the
efficiency.

As previously discussed in Section 2.2, our approach requires at least partial
network coverage of distributed monitoring stations. This is a common require-
ment for network traceback approaches, especially since the coverage does not
need to be global. The accuracy of the trace is directly proportional to the num-
ber and placement of monitoring nodes.

Our work is a significant step in the direction of live botmaster traceback, but
as the title implies, it is indeed a first step. Our future work in this area includes

16

the exploration of several topics, including optimal deployment of monitoring
nodes, SSH traffic on the last hop, further data collection with longer stepping
stone chains, and traceback experiments on in-the-wild botnets.

6 Related Work

The botnet research field is relatively new, but many papers have been published
in the last few years as the botnet threat has accelerated. As one of the first in
the botnet arena, the Honeynet Project [1] provided a starting point for future
exploration of the problem. A comprehensive study at Johns Hopkins Univer-
sity [21] constructed a honeypot-based framework for acquiring and analyzing
bot binaries. The framework can automatically generate rogue bots (drones) to
actively infiltrate botnets, which is the first step in injecting a watermark and
tracing the botmaster.

Most early botnet work focused on defining, understanding, and classifying
botnets. Some examples are papers by Cooke et al. [6], Dagon et al. [7], Ianelli and
Hackworth [17], Barford and Yegneswaran [2], and Holz’s summary in Security
& Privacy [16]. Since then, bot detection has become more of a focal point
and many techniques have been proposed. Binkley and Singh [3] presented an
anomaly-based detection algorithm for IRC-based botnets. Goebel and Holz [11]
reported success with their Rishi tool, which evaluates IRC nicknames for likely
botnet membership. Karasaridis et al. [18] described an ISP-level algorithm for
detecting botnet traffic based on analysis of transport-layer summary statistics.
Gu et al. [15] detailed their BotHunter approach, which is based on IDS dialog
correlation techniques. They also published a related paper in 2008 [14] where
they introduce BotSniffer, a tool for detecting C&C traffic in network traces.

Despite a large amount of literature regarding botnet detection and removal,
relatively little work has been done on finding and eliminating the root cause:
the botmaster himself. An earlier paper by Freiling et al. [10] describes a manual
method of infiltrating a botnet and attempting to locate the botmaster, but the
approach does not scale well due to lack of automation.

In the general traceback field, there are two main areas of interest: 1) network-
layer (IP) traceback and 2) tracing approaches resilient to stepping stones. The
advent of the first category dates back to the era of fast-spreading worms,
when no stepping stones were used and IP-level traceback was sufficient. A
leading paper in this area is Savage et al. [25], which introduced the proba-
bilistic packet marking technique, embedding tracing information an IP header
field. Two years later, Goodrich [12] expounded on this approach, introducing
“randomize-and-link” with better scalability. A different technique for IP trace-
back is the log/hash-based one introduced by Snoeren et al. [26], and enhanced
by Li et al. [19].

There are a number of works on how to trace attack traffic across step-
ping stones under various conditions. For example, [33, 34, 8, 32, 31, 4, 29, 30] used
inter-packet timing to correlate encrypted traffic across the stepping stones
and/or low-latency anonymity systems. Most timing-based correlation schemes

17

are passive, with the exception of the three active methods [31, 29, 30]. Our pro-
posed method is based on the same active watermarking principle used in these
three works. However, our method differs from them in that it uses the packet
length, in addition to the packet timing, to encode the watermark. As a result,
our method requires much fewer packets than methods [31, 29, 30] to be effective.

7 Conclusion

The key contribution of our work is that it addresses the four major obstacles
in botmaster traceback: 1) stepping stones, 2) encryption, 3) flow mixing and 4)
a low traffic volume between bot and botmaster. Our watermarking traceback
approach is resilient to stepping stones and encryption, and it requires only
a small number of packets in order to embed a high-entropy watermark into
a network flow. The watermarked flow can be tracked even when it has been
mixed with randomized chaff traffic. Due to these characteristics, our approach
is uniquely suited for real-time tracing of the interactive, low-traffic botnet C&C
communication between a bot and its botmaster. We believe that this is the first
viable technique for performing live botmaster traceback on the Internet.

We validated our watermarking traceback algorithm both analytically and
experimentally. In trials on public Internet IRC servers, we were able to achieve
virtually a 100 percent TPR with an FPR of less than 10~°. Our method can
successfully trace a watermarked IRC flow from an IRC botnet member to the
botmaster’s true location, even if the watermarked flow 1) is encrypted with
SSL/TLS; 2) passes through several stepping stones; and 3) travels tens of thou-
sands of miles around the world.

8 Acknowledgments

The authors would like to thank the anonymous reviewers for their insightful
comments that helped to improve the presentation of this paper. This work
was partially supported by NSF Grants CNS-0524286, CCF-0728771 and CNS-
0716376.

References

1. P. Béacher, T. Holz, M. Kétter, and G. Wicherski. Know Your Enemy: Tracking
Botnets. March 13, 2005. See http://www.honeynet.org/papers/bots/.

2. P. Barford and V. Yegneswaran. An Inside Look at Botnets. In Proc. Special
Workshop on Malware Detection, Advances in Info. Security. Springer, 2006.

3. J. Binkley and S. Singh An Algorithm for Anomaly-based Botnet Detection.
In Proc. 2nd Workshop on Steps to Reducing Unwanted Traffic on the Internet
(SRUTI). San Jose, CA, July 7, 2006, pp. 43-48.

4. A.Blum, D. Song, and S. Venkataraman. Detection of Interactive Stepping Stones:
Algorithms and Confidence Bounds. In Proc. 7th Symposium on Recent Advances
in Intrusion Detection (RAID 2004). Springer, October 2004.

18

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

. Z. Chi, Z. Zhao. Detecting and Blocking Malicious Traffic Caused by IRC Protocol

Based Botnets. In Proc. Network and Parallel Computing (NPC 2007). Dalian,
China, September 2007, pp. 485—489.

E. Cooke, F. Jahanian, and D. McPherson. The Zombie Roundup: Understanding,
Detecting, and Disturbing Botnets. In Proc. Steps to Reducing Unwanted Traffic
on the Internet (SRUTI). Cambridge, MA, July 7, 2005, pp. 39-44.

D. Dagon, G. Gu, C. Zou, J. Grizzard, S. Dwivedi, W. Lee, and R. Lipton. A
Taxonomy of Botnets. unpublished paper, 2005.

. D. L. Donoho, A. G. Flesia, U. Shankar, V. Paxson, J. Coit and S. Staniford. Mul-

tiscale Stepping Stone Detection: Detecting Pairs of Jittered Interactive Streams
by Exploiting Maximum Tolerable Delay. In Proc. 5th International Symposium
on Recent Advances in Intrusion Detection (RAID 2002): LNCS-2516, pp. 17-35.
Springer, October 2002.

J. Evers. ‘Bot herders’ may have controlled 1.5 million PCs. http://news.
com.com/2102-7350_3-5906896.html?tag=st.util.print

F. Freiling, T. Holz, and G. Wicherski. Botnet Tracking: Exploring a Root-Cause
Methodology to Prevent DoS Attacks. In Proc. 10th European Symposium on
Research in Computer Security (ESORICS). Milan, Italy, Sept. 2005.

J. Goebel and T. Holz. Rishi: Identify Bot Contaminated Hosts by IRC Nickname
Evaluation. In Proc. First Workshop on Hot Topics in Understanding Botnets
(HotBots). Cambridge, MA, April 10, 2007.

M. T. Goodrich. Efficient Packet Marking for Large-scale IP Traceback. In Proc.
9th ACM Conference on Computer and Commaunications Security (CCS 2002), pp.
117-126. ACM, October 2002.

J. Grizzard, V. Sharma, C. Nunnery, B. Kang, and D. Dagon. Peer-to-Peer Botnets:
Overview and Case Study. In Proc. First Workshop on Hot Topics in Understand-
ing Botnets (HotBots). Cambridge, MA, April 2007.

G. Gu, J. Zhang, and W. Lee BotSniffer: Detecting Botnet Command and Control
Channels in Network Traffic In Proc. 15th Network and Distributed System Security
Symposium (NDSS). San Diego, CA, February 2008.

G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee BotHunter: Detecting
Malware Infection Through IDS-Driven Dialog Correlation In Proc. 16th USENIX
Security Symposium. Boston, MA, August 2007.

T. Holz. A Short Visit to the Bot Zoo. Sec. and Privacy, 3(3), 2005, pp. 76-79.
N. Tanelli and A. Hackworth. Botnets as a Vehicle for Online Crime. In Proc. 18th
Annual Forum of Incident Response and Security Teams (FIRST). Baltimore, MD,
June 25-30, 2006.

A. Karasaridis, B. Rexroad, and D. Hoein. Wide-Scale Botnet Detection and Char-
acterization. In Proc. First Workshop on Hot Topics in Understanding Botnets
(HotBots). Cambridge, MA, April 10, 2007.

J. Li, M. Sung, J. Xu and L. Li. Large Scale IP Traceback in High-Speed Internet:
Practical Techniques and Theoretical Foundation. In Proc. 2004 IEEE Symposium
on Security and Privacy, IEEE, 2004.

R. Naraine. Is the Botnet Battle Already Lost? http://www.eweek.com/article2
/0,1895,2029720,00.asp

M. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A multifaceted approach to
understanding the botnet phenomenon. In Proc. 6th ACM SIGCOMM on Internet
Measurement. Rio de Janeiro, Brazil, October 25-27, 2006.

P. F. Roberts. California Man Charged with Botnet Offenses. http://www.
eweek.com/article2/0,1759,1881621,00.asp

19

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

P. F. Roberts. Botnet Operator Pleads Guilty. http://www.eweek.com/article2/
0,1759,1914833,00.asp

P. F. Roberts. DOJ Indicts Hacker for Hospital Botnet Attack. http://www.
eweek.com/article2/0,1759,1925456,00.asp

S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical Network Support
for IP Traceback. In Proc. ACM SIGCOMM 2000, pp. 295-306. Sept. 2000.

A. Snoeren, C. Patridge, L. A. Sanchez, C. E. Jones, F. Tchakountio, S. T. Kent,
and W. T. Strayer. Hash-based IP Traceback. In Proc. ACM SIGCOMM 2001,
pp- 3-14. ACM, September 2001.

Symantec. Symantec Internet Security Threat Report — Trends for January 06 -
June 06. Volume X, September 2006.

Trend Micro. Taxonomy of Botnet Threats. Trend Micro Enterprise Security
Library, November 2006.

X. Wang, S. Chen, and S. Jajodia. Tracking Anonymous, Peer-to-Peer VoIP Calls
on the Internet. In Proc. 12th ACM Conference on Computer and Communications
Security (CCS 2005), October 2007.

X. Wang, S. Chen, and S. Jajodia. Network Flow Watermarking Attack on Low-
Latency Anonymous Communication Systems. In Proc. 2007 IEEE Symposium on
Security and Privacy (S&P 2007), May 2007.

X. Wang and D. Reeves. Robust Correlation of Encrypted Attack Traffic Through
Stepping Stones by Manipulation of Interpacket Delays. In Proc. 10th ACM Con-
ference on Computer and Communications Security (CCS 2003), pp. 20-29. ACM,
October 2003.

X. Wang, D. Reeves, and S. Wu. Inter-packet Delay Based Correlation for Tracing
Encrypted Connections Through Stepping Stones. In Proc. 7th Furopean Sympo-
stum on Research in Computer Security (ESORICS 2002), LNCS-2502, pp. 244—
263. Springer-Verlag, October 2002.

K. Yoda and H. Etoh. Finding a Connection Chain for Tracing Intruders. In Proc.
6th European Symposium on Research in Computer Security (ESORICS 2000),
LNCS-1895, pp. 191-205. Springer-Verlag, October 2002.

Y. Zhang and V. Paxson. Detecting Stepping Stones. In Proc. 9th USENIX
Security Symposium, pp. 171-184. USENIX, 2000.

20

