
Active Timing-Based Correlation of Perturbed Traffic Flows with Chaff Packets∗

Pai Peng, Peng Ning, Douglas S. Reeves
Department of Computer Science

North Carolina State University

Xinyuan Wang
Department of Information & Software Engineering

George Mason University

Abstract

Network intruders usually launch their attacks through a
chain of intermediate stepping stone hosts in order to hide
their identities. Detecting such stepping stone attacks is dif-
ficult because packet encryption, timing perturbations, and
meaningless chaff packets can all be utilized by attackers to
evade from detection. In this paper, we propose a method
based on packet matching and timing-based active water-
marking that can successfully correlate interactive stepping
stone connections even if there are chaff packets and limited
timing perturbations. We provide several algorithms that
have different trade-offs among detection rate, false posi-
tive rate and computation cost. Our experimental evalua-
tion with both real world and synthetic data indicates that
by integrating packet matching and active watermarking,
our approach has overall better performance than existing
schemes.

1. Introduction

Network intruders have developed various countermea-
sures to elude from being discovered. A popular and ef-
fective method is to launch attacks through a sequence of
intermediate hosts, also known asstepping stones. Intrud-
ers can connect from one host to another using protocols
such as Telnet or SSH, and attack the real victims only on
the last host. In this scenario, even if the last host is cor-
rectly identified, it could be very difficult to trace back to
the real origin. Correlation methods are needed to link the
connections between stepping stones together.

Researchers have proposed several approaches to detect
stepping stone connections. Early methods are based on
comparing the contents of packets [6] [10]. Due to the broad
applications of secure protocols such as SSH and IPsec, re-
cent approaches focus on analyzing packet timing charac-
teristics [13] [11] [9] [3] [1] [8] [12].

However, existing correlation schemes are still far from
being perfect. Attackers may intentionally insert tim-

∗This work is supported by Advanced Research & Development
Agency (ARDA) under contract # NBCHC030142

ing perturbations simply through delaying certain packets.
Another countermeasure is to insert meaningless padding
packets, also calledchaff. When transmitted through en-
crypted channels, chaff packets are very difficult to be dif-
ferentiated from normal packets.

In this paper, we propose an approach that can correlate
stepping stone connections when timing perturbations and
chaff are introduced simultaneously. Inspired by [8] and
[12], we first embed timing-based watermarks into attack
flows. We then use packet matching to find all possible cor-
responding packets in suspicious flows. Correlation results
are decided by decoding the watermarks closest to the orig-
inal ones from all packet combinations. We provide 4 algo-
rithms with different trade-offs among detection rate, false
positive rate and computation cost. We experimentally com-
pare our algorithms with the best existing approaches, and
show our approach can achieve overall better performance.

In the rest of this paper, section 2 gives out the problem
statement. Section 3 describes packet matching process and
watermark decoding algorithms. Section 4 provides the ex-
perimental evaluations and comparisons. Section 5 reviews
related work. Section 6 concludes our paper and points out
further research directions.

2. Problem Statement

We useh1 ↔ h2 to represent a bi-directional network
connectionbetween hosth1 andh2, andh1 → h2 a unidi-
rectionalflow from h1 to h2. A flow is also denoted asf
when hosts and directions are not concerned. Given hosts
h1, h2, . . . , hn, when a person or a program connects from
hi to hi+1, the sequence of connectionsh1 ↔ h2 ↔ . . . ↔
hn is called aconnection chain. The intermediate hosts in
a connection chain are calledstepping stones. Assuming
j > i, we callhi → hi+1 anupstreamflow of hj → hj+1,
andhj → hj+1 a downstreamflow of hi → hi+1. Intu-
itively, information is propagated from an upstream flow
to its downstream flows. Timestamp of packetpi is ti.
Flow f is also represented as the sequence of its packets
〈p1, p2, . . . , pn〉. We define thetracing problem of a con-
nection chain as given an upstream flowf , to identify its
downstream flows.

Currently, the most promising correlation approaches are
based on timing analysis. To evade timing analysis, attack-
ers may introduce timing perturbations by delaying some
or all packets. Another countermeasure is to insert mean-
ingless chaff packets into a downstream flow. It would be
very difficult to distinguish chaff from normal packets when
encryption is used.

We propose to investigate tracing techniques that can
deal with both timing perturbations and chaff packets. Sim-
ilar to previous work [3] [8] [1] [12], we focus on interac-
tive connections and assume the maximum timing pertur-
bation attackers can introduce is bounded. Normally packet
timestamps captured from different hosts cannot be com-
pared directly because time clocks may not be fully syn-
chronized. To simplify the situation, we assume the skews
between different clocks are known so that timestamps
can be adjusted for comparison. The timing errors from
timestamp adjustment, the maximum perturbations added
by attackers, and delays from other sources are collectively
represented by a singlemaximum delay∆. In summary, we
have following assumptions in our solution:

1. Every packet in an upstream flow will go to its down-
stream flow as a single packet.

2. The delay between a packet in an upstream flow and its
corresponding packet in a downstream flow is bounded
by [0, ∆]. We also call thistiming constraint.

3. The order of the packets in an upstream flow is kept
the same in a downstream flow. We also call thisorder
constraint.

3. Proposed Approaches

We adopt the inter-packet-delay (IPD) based watermark-
ing scheme [8], which was originally proposed to defeat
timing perturbations. The idea is to embed a unique timing-
based watermark into an upstream flowf . If later the same
watermark can be detected in another flowf ′, it is very
likely that f ′ is a downstream flow off . However, this
scheme cannot be applied to chaff directly. Extra chaff
packets will make current detection mechanism fail to find
the correct location to decode the watermark. Suppose up-
stream flowf is 〈p1, . . . , pn〉, andf ′ = 〈p′1, c1, . . . , p

′
n, cm〉

is its chaffed downstream flow, the correct corresponding
packets〈p′1, . . . , p′n〉 form a subsequenceof f ′. Current
scheme cannot dig out this subsequence from all other sub-
sequences ofn packets. In fact, due to the difficulty of dis-
tinguishing chaff from normal packets, it is very unlikely to
identify the correct subsequence exclusively.

To defeat chaff, our idea is to find all possible subse-
quences off in f ′, decode a watermark from each of them,
and choose the “best” one that has the smallest hamming

distance to the original watermark. The right subsequence
must be chosen sometime so that we can get the correct wa-
termark. By using the “best” watermark, if a downstream
flow can be identified before chaff is added, it can still be
identified afterward. Actually, it enables us to detect certain
flows missed by the basic watermark scheme. On the other
hand, since the “best” watermark may be obtained from an
incorrect subsequence, the false positive rate may also in-
crease. This is the trade-off in our approach.

3.1. Inter-Packet-Delay Based Watermarking

We briefly introduce the IPD based watermark scheme
[8]. A watermarkw is embedded into an upstream flow
through slightly delaying certain packets. Such changes of
timing will then propagate to all of its downstream flows. If
w is unique enough, it should be detected in all the down-
stream flows, but nowhere else, with high probability.

Given a flow〈p1, . . . , pn〉, to embed a single watermark
bit, we randomly choose2r distinct packets〈pe1 , . . . , pe2r

〉,
called embedding packets, and construct2r packet pairs:
〈pei , pei+d〉. d (≥ 1) is a user-selected value. The IPD of
pair 〈pei , pei+d〉 is defined as:

ipdei = tei+d − tei .

Randomly divide2r IPDs into 2 groups,ipd1 andipd2,
with each group havingr IPDs. We useipd1

i and ipd2
i to

denote IPDs inipd1 andipd2, respectively. Apparentlyipd1
i

andipd2
i are identically distributed. ThereforeE(ipd1

i) =
E(ipd2

i). The average difference between the IPDs from
group 1 and 2 is:

D = 1
2r

∑r
i=1(ipd1

i − ipd2
i).

Then we should haveE(D) = 0. r is calledredundancy
number. The biggerr is, the more likelyD is equal to 0.

If we increase or decreaseD by a valuea > 0, we can
skew the distribution ofD. The probability thatD is posi-
tive or negative is increased. This gives out a way to embed
a single watermark bit probabilistically. To embed 0, we
decreaseD by a so that it is more likelyD < 0. To em-
bed 1, we increaseD by a so that it is more likelyD > 0.
The decrease (increase) ofD is achieved by decreasing (in-
creasing) everyipd1

i and increasing (decreasing) everyipd2
i

by a. The decrease or increase of a single IPD is achieved
by delaying the1st or 2nd packet in that IPD, respectively.
The watermark bit can be decoded by checking the sign of
D. Bit 0 (1) is decoded whenD ≤ 0 (> 0). There is a
slight probability that a watermark bit cannot be correctly
embedded. This probability can be reduced by increasingr.

A l-bit watermarkw is embedded by repeating the above
procedurel times. Each time a different set of embedding
packets should be used. In watermark detection, another
l-bit watermarkw′ is decoded from a suspicious flow and

Original flow

Matching
Packets of Pi

Matching
Packets of Pi+1

Suspicious flow

Pi Pi+1

Figure 1. Determining matching packets

compared withw. If the hamming distance betweenw and
w′ is less than or equal to a pre-defined threshold, we report
a stepping-stone flow is found. Because watermark location
is kept secret from attackers, this scheme is robust against
random timing perturbations. However, extra chaff packets
will destroy the decoding mechanism.

3.2. Determining Matching Packets

Suppose upstream flowf is 〈p1, . . . , pn〉, which has wa-
termarkw embedded, and suspicious downstream flowf ′

is 〈p′1, . . . , p′m〉 (m ≥ n). For every packet inf , we de-
termine which packet(s) inf ′ could be its corresponding
packet. Based on our assumption that every packet in the
upstream flow will go into the downstream flow, iff andf ′

are in the same connection chain, we can find correspond-
ing packets for all packets. Otherwise, we report they are
not in the same connection chain. Because of the difficulty
to distinguish normal packets from chaff, we may only ob-
tain some possible corresponding packets through certain
packet matching criteria. We call these possible correspond-
ing packetsmatching packets, or simplymatches.

Timing constraint in our assumptions is used to deter-
mine matching packets. It requires that any matching packet
p′j of packetpi must satisfy:0 ≤ t′j − ti ≤ ∆. All the
matching packets ofpi form a set:

M(pi) = {p′j | 0 ≤ t′j − ti ≤ ∆}.
M(pi) is called thematching setof packetpi in flow f ′.
This procedure is shown in figure 1.

Matching sets of all packets can be computed quickly.
To determineM(pi+1), we only need to scan from the first
packet inM(pi). Heuristics can also be used. Supposep′j
andp′k are the first and last packet inM(pi) (i.e., have the
smallest and largest timestamp). To find the first packetp′x
in M(pi+1), if ti+1 − ti ≤ ∆

2 , we scan forward fromp′j
sincep′x might be closer to it thanp′k. If ∆

2 < ti+1−ti ≤ ∆,
we scan backward fromp′k. Otherwise, we scan fromp′k+1

sinceM(pi) andM(pi+1) will not overlap. Each packet in
f ′ will be scanned at most twice in the worse case.

For better performance, we want the matching sets to be
as smaller as possible. Besides the order constraint, packet
size might be used as an extra constraint for packet match-
ing. E.g., when block ciphers in SSH only pad a packet

Time

Matching Packets
of Pi

Matching Packets
of Pi+d

Largest IPD

Smallest IPD

Figure 2. The largest and smallest IPDs

to 16-byte boundary, we may usequantizedpacket size as a
constraint, such as multiple of 16 bytes, to determine match-
ing sets. However, using this constraint is inappropriate if
attackers can actively add inner-packet paddings.

3.3. Computing the “Best” Watermark

After matching sets have been determined, we find the
“best” watermark from all possible subsequences inf ′. In
the following, we discuss several algorithms with different
emphases on detection rate, false positive rate or computa-
tion cost. We are trying to achieve the best trade-off among
these three aspects.

3.4. Algorithm 1: Brute Force Algorithm

The idea can be directly converted into a brute-force al-
gorithm, which forms all subsequences by trying all combi-
nations of matching packets. To satisfy the order constraint,
packetsp′j ∈ M(pi) andp′k ∈ M(pi+1) can be in the same
subsequence only ifj < k.

This algorithm obviously suffers from its high computa-
tion cost. IfM(pi) has|M(pi)| packets, the computation
cost is approximately:cost ≈ ∏n

i |M(pi)|. We need algo-
rithms with better efficiency.

3.5. Algorithm 2: Greedy Algorithm

Since only the “best” watermark is wanted, we propose
a very fast Greedy algorithm, which guarantees to return a
watermark whose hamming distance is no bigger than that
of the Brute Force algorithm. For each watermark bit, this
algorithm only selects the matching packets that are most
likely to decode the same bit. If bit 1 is wanted, we use the
largest IPDs in the1st group ipd1, and the smallest IPDs
in the2nd groupipd2. Similarly, to decode 0, we use the
smallest IPDs inipd1 and the largest IPDs inipd2. We then
selects the first or the last matching packets to get the de-
sired IPDs as shown in figure 2.

This algorithm has very low computation cost because it
only form a single subsequence. It also has very good de-
tection rate and can identify every flow that can be identified
by the Brute Force algorithm. However, by simply selecting
the most appropriate matches, the subsequence constructed

may be conflict with the order constraint, which leads to
potential high false positive rate.

3.6. Algorithm 3: Greedy+ Algorithm

In this algorithm, we use the order constraint to decrease
the false positive rate of the Greedy algorithm, while still
keeping high detection rate and low computation cost. By
only constructing a very small portion of all possible sub-
sequences that will most likely give the best result, water-
marks can still be computed efficiently. Compared with
Greedy, Greedy+ reduces the false positive rate at the cost
of slightly decreased detection rate.

The Greedy+ algorithm has four phases. First, matching
sets are further simplified by removing duplicate first or last
packets. E.g., suppose bothM(p1) andM(p2) are{p′1, p′2}.
p′1 can never be used as a matching packet forp2 because
thenp1 will have no match to choose. Similarly,p′2 cannot
be used forp1 either. Such packets can be safely remove
without affecting final result.

Second, we use the Greedy algorithm to compute a wa-
termarkwg and compare to the original watermarkw. If the
hamming distance is larger than the threshold, we report it is
not a stepping-stone connection. Obviously, the unmatched
bits of wg will not match in the Greedy+ algorithm either.
So we will only focus on the rest of watermark bits.

Third, we adjust the matching packets selected by the
Greedy algorithm to eliminate the conflict with the or-
der constraint. We always allow a packet to choose its
first match, and re-select for other packets that use their
last matches. This process starts from the last embedding
packet, for which we can alway stick to its current selec-
tion. If the current match has no conflict or is the first in the
matching set, we stick to it. Otherwise, we switch to the last
match that has no conflict with packets later than it. E.g.,
supposeM(p1) = {p′1, p′2, p′3, p′4}, M(p2) = {p′3, p′4, p′5},
M(p3) = {p′4, p′5, p′6}, p1 andp3 are embedding packets
and their current matches are bothp′4. We begin withp3

and stick top′4. Forp2 we select the last non-conflict match
p′3. Thenp1 has to select the last non-conflict matchp′2. We
then decode a new watermarkwb. If wb has a hamming dis-
tance less than or equal to the threshold, we report this is a
stepping-stone flow. Otherwise, we go to the final phase to
further adjust the selections of matching packets.

To speed up later computation, we record all the IPD dif-
ferencesD when computingwb, except for those bits that
will never match. Recall that we decode 1 ifD > 0, and
decode 0 ifD ≤ 0. These IPD differences are divided into
two groupsD+ andD− based on whether their correspond-
ing watermark bits match the original watermark bits. If the
ith bits ofwb andw are the same, we putDi into D+. Oth-
erwise, we putDi in D− (whetherDi is positive or negative
is not related with the group it belongs to). Apparently, we
can get a better watermark by making aD ∈ D− change

its sign. Among allD ∈ D−, the one with the smallest
absolute value is the easiest to be changed.

In the final phase, we focus on the embedding packets
used for thoseD ∈ D−. We start withDj , which has the
smallest absolute value inD−. Supposepk is its last em-
bedding packet.

1. If the current selection of matching packet ofpk is the
same as in the Greedy algorithm, we stick to it, and
continue for the previous embedding packet.

2. Otherwise, we select the next matching packet ofpk,
if any. Since other packets will be affected, we have to
re-select their matches too. If this can improveDj and
does not make anyD ∈ D+ change its sign, we then
stick the new matching packet.

3. Repeat step 2 forpk until a) Dj changes its sign,b) no
more matching packets forpk, or c) making changes
will not necessarily improve the watermark. If water-
mark bit j is now match, we then forward to the next
smallestD ∈ D−. Otherwise, we repeat this proce-
dure for the previous embedding packet ofDj . We
terminate whenever the hamming distance is reduced
to the same as the threshold.

Unlike the Brute Force algorithm, we avoid time con-
suming backtracking. The selection of one embedding
packet is determined without considering the changes of
other packets. Because we use such heuristics to always
adjust those packets that are most likely to generate a better
result, usually the watermark obtained is very close to the
“best” one.

3.7. Algorithm 4: Greedy∗

We can obtain the actual “best” watermark by only
changing the last phase of the Greedy+ algorithm. After
the embedding packets for thoseD ∈ D− are determined,
we can enumerate all possible combinations of their match-
ing packets and decode the “best” watermark. Although this
is similar to the Brute Force algorithm, the previous phases
of the algorithm will reduce the size of searching space sig-
nificantly so that we can expect a much better efficiency. To
bound the worst case execution time, we allow users to set
up a maximum bound. If it cannot finish within the bound,
it returns the best watermark obtained so far.

3.8. Complexity Analysis

In this section, we investigate the time complexity of dif-
ferent algorithms. The complexity of all algorithms are af-
fected by the number of packets in the flow pairs, the num-
ber of chaff packets added, and the maximum delay∆.

In the packet matching process, each packet in suspi-
cious flowf ′ is checked at most twice. Thus, the worst case

complexity isO(m), wherem is the number of packets in
f ′. If f ′ is in the same connection chain asf , m is equal to
the sum of packet numbern in f and the number of chaffc:
m = n + c. The average packet number in a matching set
can be approximated by the product of the average packet
arrival rateλf ′ in f ′, and the maximum delay∆: λf ′ · ∆.
Whenf ′ is actually the chaffed flow,λf ′ is equal to the av-
erage packet arrival rate off plus the average arrival rate of
chaff: λf ′ = λf + λc.

The Greedy algorithm only check every embedding
packet once, so its complexity isO(n). For the Greedy+

algorithm, the most time consuming part is the last phase.
Suppose the embedding packets left to be adjusted are
pe1 , . . . , pek

. At most
∑k

i=1 |M(pei)| packets have to be
scanned. This is bounded byO(n · λf ′ · ∆). Simi-
larly, the last phase of Greedy∗ algorithm needs to check∏k

i=1 |M(pei
)| packets. However, both algorithms nor-

mally have much better performance than their worst case
scenarios.

4. Experiments

We evaluate the performance of our algorithms through
detection rate, false positive rateand computation cost.
Both real world and synthetic flows are used. We compare
our algorithms with the basic watermark scheme [8] and
scheme S-IV [12], because they are the best existing active
and passive schemes, respectively. Only the timing con-
straint is used in packet matching process. We expect the
false positive rate and computation cost to decrease dramat-
ically if quantized packet size constraint can also be used.

4.1. Real World Data Set

We use 91 real SSH/Telnet traces derived from Bell
Labs-1 Traces of NLANR [4]. All traces have more than
1,000 packets. For each trace, we first embed a randomly
generated watermark1. We then add 9 different timing per-
turbations, which is uniformly distributed with a maximum
delay from 0 (i.e., no perturbation) to 8 seconds. For each
timing perturbation, we add 11 different kinds of Poisson
distributed chaff packets. The arrival rate of chaff packets
λc is from 0 (i.e., no chaff) to 5. The maximum delay∆ is
set the same as maximum timing perturbation. The parame-
ters are shown in table 1. In Greedy∗ algorithm, we also set
the bound of computation cost to 106.

Detection Rate is evaluated by calculating the corre-
lation between each original flow and its perturbed and
chaffed flows. Figure 3 shows the detection rate changing
with λc when∆ is 7 seconds. It clearly shows that chaff will
destroy basic watermark scheme. The Greedy algorithm has
the best detection rate. Greedy+ and Greedy∗ outperform

1No watermark is embedded when scheme S-IV is evaluated.

Table 1. Experiment parameters
∆ 0, 1, 2, 3, 4, 5, 6, 7, 8 (second)
λc 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5

Watermark 24 bits
Redundancyr 4
WM threshold 7
WM delaya 600ms

S-IV threshold 3 seconds

scheme S-IV when there is no chaff. Although theoretically
Greedy∗ should have better detection rate than Greedy+,
it perform slightly worse under the bound of computation
cost. Figure 4 shows the detection rate changing with∆
whenλc = 3. S-IV shows significant lower detection rate
than our algorithms when there is no chaff, and fails to reach
100%. By using the “best” watermark, the increase of chaff
helps the detection rate. However, it also increases the false
positive rate, as shown in the following.

False Positive Rateis evaluated by correlating each
original flow with the perturbed and chaffed flows of other
90 flows. Figure 5 shows the false positive rate changing
with λc when∆ = 7s. Figure 6 shows the false positive
rate changing with∆ whenλc = 3. Unsurprisingly, the
Greedy algorithm shows the worst false positive rate. Ex-
cept for the basic watermark scheme, the false positive rates
of other algorithms increase withλc and∆. Both Greedy+

and Greedy∗ show better performance than scheme S-IV.
The false positive rates of Greedy+ and Greedy∗ are up to
about 40% lower than that of S-IV, as shown in figure 6.

Computation Costs.To eliminate the bias of implemen-
tation details, we definecomputation costas the number of
packets had to be accessed to compute the “best” watermark
or the smallest deviation for scheme S-IV. We also include
the packet matching process since it is a time consuming
step in our approaches and S-IV. We distinguish the compu-
tation costs between correlated and uncorrelated flows.

For correlated flows, figure 7 and 8 show computation
costs changing withλc and∆, respectively. The Greedy al-
gorithm has constant and the smallest cost. Greedy∗ has a
bump in its curve. It is because when more chaff packets are
added, matching sets grow bigger and more packets need to
be checked. However, if enough chaff is added, our opti-
mization techniques can give the results quickly and makes
the cost decrease. Greedy+ also shows a smaller bump for
the same reason. There exist certain cases that Greedy∗

fails to finish within its bound of computation cost. Both
Greedy+ and Greedy∗ have up to about 40 times lower costs
than S-IV.

Figure 9 and 10 show the costs for uncorrelated flows.
It is worth noticing that we may have 0 as the cost2. It is

2In order to draw figures in logarithm scale, we change 0 to 1.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Arrival Rate of Poisson Distributed Chaff Packets

D
et

ec
tio

n
R

at
e Basic Watermark

Greedy
Greedy+
Greedy*
S-IV

Figure 3. Detection rate
changing with λc, ∆ = 7s

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8
Maximum Delay (second)

D
et

ec
tio

n
R

at
e Basic Watermark

Greedy
Greedy+
Greedy*
S-IV

Figure 4. Detection rate
changing with ∆, λc = 3

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Arrival Rate of Poisson Distributed Chaff Packets

F
al

se
 P

os
iti

ve
 R

at
e Basic Watermark

Greedy
Greedy+
Greedy*
S-IV

Figure 5. False positive rate
changing with λc, ∆ = 7s

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8
Maximum Delay (second)

F
al

se
 P

os
iti

ve
 R

at
e

Basic Watermark
Greedy
Greedy+
Greedy*
S-IV

Figure 6. False positive rate
changing with ∆, λc = 3

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Arrival Rate of Poisson Distributed Chaff Packets

C
om

pu
ta

tio
n

C
os

ts

Pkt matching Greedy Greedy+
Greedy* S-IV

Figure 7. Costs changing with
λc, ∆ = 7s, correlated flows

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

0 1 2 3 4 5 6 7 8
Maximum Delay (second)

C
om

pu
ta

tio
n

C
os

ts

Pkt matching Greedy Greedy+
Greedy* S-IV

Figure 8. Costs changing with
∆, λc = 3, correlated flows

because if the matching process fails to find any match-
ing packet, we can immediately have negative correlation
result. The cost of Greedy∗ reaches its maximum bound
rapidly when chaff or delay is big. Greedy+ is still up to
about 2 times faster than S-IV.

4.2. Synthetic Data Set

We have repeated the above experiments using 100 syn-
thetic tcplib traces [2]. The results are consistent with the
real world data. Please refer to [5] for complete informa-
tion.

4.3. Overall Performance

The Greedy+ algorithm has shown overall the best trade-
off among detection rate, false positive rate and computa-
tion cost. Greedy∗ suffers from high computation cost, es-
pecially when it fails to find correlation. Scheme S-IV has
worse false positive rate than both Greedy+ and Greedy∗.
It also has higher computation cost than Greedy+.

5. Related Work

The problem of detecting interactive stepping stones was
first formulated by Staniford and Heberlein [6]. Their
content-based approach compare thumbprints created from

packet payload. Another content-based scheme was Sleepy
Watermark Tracing [10], which injects non-displayable
contents into packets. These methods are vulnerable to en-
crypted traffic such as SSH connections.

More recent schemes focused on timing characteristic
of packets. Zhang and Paxson [13] proposed an ON/OFF
based approach that can correlate encrypted traffic. Yoda
and Etoh [11] proposed a deviation-based scheme which
calculates deviation between an attacking flow and all other
flows appeared around the same time. Wang et al. [9]
showed that timing characteristics of IPDs were preserved
across multiple stepping stones, and could be used for cor-
relation. These methods are vulnerable to timing perturba-
tions intentionally added by attackers.

Donoho et al. [3] investigated the theoretical limits of
the attackers’ ability to disguise their traffic through tim-
ing perturbations and chaff packets. Wang and Reeves [7]
proposed an active watermarking scheme that was robust to
random timing perturbations. They identified the tradeoffs
between the correlation effectiveness, timing perturbations,
and packet number needed. Blum et al. [1] proposed to
correlate stepping stone connections by counting the packet
number differences in certain time intervals. Wang et al.
also proposed a probabilistic watermarking scheme [8] with
even timing adjustments and better true positive rate.

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Arrival Rate of Poisson Distributed Chaff Packets

C
om

pu
ta

tio
n

C
os

ts

Pkt matching Greedy Greedy+
Greedy* S-IV

Figure 9. Computation costs changing with λc,
∆ = 7s, uncorrelated flows

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

0 1 2 3 4 5 6 7 8
Maximum Delay (second)

C
om

pu
ta

tio
n

C
os

ts

Pkt matching Greedy Greedy+
Greedy* S-IV

Figure 10. Computation costs changing with ∆,
λc = 3, uncorrelated flows

Zhang et al. [12] proposed several algorithms to detect
stepping stone connections when timing perturbation or/and
chaff are present. Their algorithms were also based on find-
ing possible corresponding packets. Unlike active schemes,
their passive schemes do not require traffic manipulation,
thus are less noticeable. However, using active watermark-
ing, our algorithms can achieve better performance with less
computation costs.

6. Conclusions

Tracing attacks through stepping stones is a difficult
problem. Encryption, timing perturbation and chaff packets
can all be employed by intruders to hide their identities. To
defeat these countermeasures, we introduce our correlation
scheme based on packet matching and active timing-based
watermarking. We have developed a series of algorithms
to compute the “best” watermark. These algorithms have
different emphases on detection rate, false positive rate or
computation cost. Through experiments, we have demon-
strated the effectiveness and efficiency of our algorithms.
We have also compared our algorithms with existing best
schemes, and shown that overall Greedy+ algorithm has
better performance.

Our algorithms (and several previous approaches) re-
ply on the assumption that packets should not be lost or
combined together after passing through a stepping stone.
However, packet loss or re-packetization are common when
packets arrive too closely or system load is high. In this
case, our scheme may not always return the desired result.
In the future, we will focus on correlation methods that will
work under packet loss and re-packetization.

Acknowledgment. We would like to thank Dr. Yong
Guan for providing a draft of his work [12], and thank
anonymous reviewers for their helpful comments.

References

[1] A. Blum, D. Song, and S. Venkataraman. Detection of in-
teractive stepping stones with maximum delay bound: algo-

rithms and confidence bounds. InProceedings of RAID’04,
2004.

[2] P. B. Danzig and S. Jamin. Tcplib: A library of TCP/IP traf-
fic characteristics.USC Networking and Distributed Systems
Laboratory TR CS-SYS-91-01, 1991.

[3] D. Donoho, A. Flesia, U. Shankar, V. Paxson, J. Coit, and
S. Staniford. Multiscale stepping-stone detection: detecting
pairs of jittered interactive streams by exploiting maximum
tolerable delay. InProceedings of RAID’02, 2002.

[4] NLANR trace archive. http://pma.nlanr.net/traces/long/.
[5] P. Peng, P. Ning, D. S. Reeves, and X. Wang. Active timing-

based correlation of perturbed traffic flows with chaff pack-
ets. Technical Report TR-2005-11, Department of Computer
Science, NC State Univ., 2005.

[6] S. Staniford-Chen and L. T. Heberlein. Holding intruders
accountable on the Internet. InProceedings of IEEE S&P
95, pages 39–49, Oakland, CA, 1995.

[7] X. Wang and D. S. Reeves. Robust correlation of encrypted
attack traffic through stepping stones by manipulation of
inter-packet delays. InProceedings of CCS’03, pages 20–
29, 2003.

[8] X. Wang, D. S. Reeves, P. Ning, and F. Feng. Robust
network-based attack attribution through probabilistic wa-
termarking of packet flows. Technical Report TR-2005-10,
Department of Computer Science, NC State Univ., 2005.

[9] X. Wang, D. S. Reeves, and S. F. Wu. Inter-packet delay
based correlation for tracing encrypted connections through
stepping stones. InD. Gollmann, G. Karjoth and M. Waid-
ner, editors, 7th European Symposium on Research in Com-
puter Security - ESORICS 2002, 2002.

[10] X. Wang, D. S. Reeves, S. F. Wu, and J. Yuill. Sleepy water-
mark tracing: An active network-based intrusion response
framework. InProceedings of 16th International Confer-
ence on Information Security (IFIP/Sec’01), 2001.

[11] K. Yoda and H. Etoh. Finding a connection chain for tracing
intruders. InF. Guppens, Y. Deswarte, D. Gollmann and M.
Waidners, editors, 6th European Symposium on Research in
Computer Security - ESORICS 2000, 2000.

[12] L. Zhang, A. Persaud, A. Johnson, and Y. Guan. Step-
ping stone attack attribution in non-cooperative IP networks.
Technical Report 2005-02-1, Department of Electrical and
Computer Engineering, Iowa State University, 2005.

[13] Y. Zhang and V. Paxson. Detecting stepping stones. InPro-
ceedings of 9th USENIX Security Symposium, pages 171–
184, 2000.

