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BOTMASTER TRACEBACK

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of application Ser. No.
12/557,993, filed Sep. 11, 2009, which claims the benefit of
U.S. Provisional Application No. 61/096,624, filed Sep. 12,
2008, which is hereby incorporated by reference in its
entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under
Grant No. CNS-0524286 awarded by the National Science
Foundation. The government has certain rights in the inven-
tion.

BACKGROUND

Botnets are currently one of the most serious threats to
computers connected to the Internet. Recent media coverage
has revealed many large-scale botnets worldwide. One botnet
has reportedly compromised and controlled over 400,000
computers including computers at the Weapons Division of
the U.S. Naval Air Warfare Center, U.S. Department of
Defense Information Systems Agency. Another recently dis-
covered botnet is suspected to have controlled 1.5 million
computers around the globe. It has been estimated that more
than five percent of all computers connected to the Internet
have been compromised and used as bots. Currently, botnets
are responsible for most spam, adware, spyware, phishing,
identity theft, online fraud and DDoS attacks on the Internet.

The botnet problem has recently received significant atten-
tion from the research community. Most existing work on
botnet defense has focused on the detection and removal of
command and control (C&C) servers and individual bots.
While such a capability is a useful start in mitigating the
botnet problem, it does not address the root cause: the bot-
master. For example, existing botnet defense mechanisms can
detect and dismantle botnets, but they usually cannot deter-
mine the identity and location of the botmaster. As a result, the
botmaster is free to create and operate another botnet by
compromising other vulnerable hosts. Botmasters can cur-
rently operate with impunity due to a lack of reliable trace-
back mechanisms. However, if the botmaster’s risk of being
caught is increased, the botmaster would be hesitant to create
and operate botnets. Therefore, even an imperfect botmaster
traceback capability could effectively deter botmasters.
Unfortunately, current botmasters have all the potential gains
from operating botnets with minimum risk of being caught.
Therefore, what is needed to solve the botnet problem is a
reliable method for identifying and locating botmasters
across the Internet.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a system diagram showing botmaster traceback
by watermarking botnet response traffic as per an aspect of an
embodiment of the present invention.

FIG. 2A is a plot of 32-bit watermark collision probability
plot for an aspect of an embodiment of the present invention.

FIG. 2B is a plot of 32-bit watermark collision distribution
plot for an aspect of an embodiment of the present invention.
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2

FIG. 3 is a block diagram of an experimental setup of an
aspect of an embodiment of the present invention for unen-
crypted traffic.

FIG. 4 is a plot showing offset self-synchronization using
an offset sliding-window as per an aspect of an embodiment
of the present invention for unencrypted traffic.

FIG. 5 is a block diagram of an experimental setup of an
aspect of an embodiment of the present invention for
encrypted traffic.

FIG. 6 is a table of experimental results for encrypted
traffic an aspect of an embodiment of the present invention.

FIG. 7 is a plot showing how IRC server throttling causes
packets to be spaced apart further upon arrival using an aspect
of'an embodiment of the present invention.

FIG. 8 is a system diagram of an aspect of an embodiment
of the present invention.

FIG. 9 is a block diagram of a honeynet host as per an
aspect of an embodiment of the present invention.

FIG. 10 is a flow diagram of an aspect of an embodiment of
the present invention.

DETAILED DESCRIPTION OF EMBODIMENTS

Embodiments of the present invention enable real-time
botmaster traceback across the Internet. Despite the increas-
ing botnet threat, research in the area of botmaster traceback
is limited. The four main obstacles are 1) the low-traffic
nature of the bot-to-botmaster link; 2) chains of “stepping
stones;” 3) the use of encryption along these chains; and 4)
mixing with traffic from other bots. Most existing traceback
approaches can address one or two of these issues, but no
single approach can overcome all of them. Embodiments of
the present invention use a watermarking technique to
address all four obstacles simultaneously. The embodiments
uniquely identify and trace IRC-based botnet flow even if 1)
it is encrypted (e.g., via SSL/TLS); 2); it passes multiple
intermediate stepping stones (e.g., IRC server, SOCKs); and
3) it is mixed with other botnet traffic. The watermarking
scheme relies on adding padding characters to outgoing bot-
net C&C messages at the application layer. This produces
specific differences in lengths between randomly chosen
pairs of messages in a network flow. As a result, the water-
marking technique may be used to trace interactive botnet
C&C traffic with only a few dozen packets to be effective.

Tracking and locating the botmaster of a discovered botnet
is very challenging. First, the botmaster only needs to be
online briefly to issue commands or check the bots’ status. As
a result, any botmaster traceback may have to occur in real
time. Second, the botmaster usually does not directly connect
to the botnet C&C server and may be able to easily launder his
connection through various stepping stones. Third, the bot-
master may be able to protect his C&C traffic with strong
encryption. For example, Agobot has built-in SSL/TLS sup-
port. Finally, the C&C traffic from the botmaster is typically
low-volume. As a result, a successful botmaster traceback
approach may need to be effective on low-volume, encrypted
traffic across multiple stepping stones.

Existing traceback methods cannot effectively track a bot-
master across the Internet in real-time. Some methods have
been shown to be able to trace encrypted traffic across various
stepping stones and proxies, but they need a large amount of
traffic (at least hundreds of packets) to be effective. During a
typical session, each bot exchanges only a few dozen packets
with the botmaster. Due to this low traffic volume, these types
of high traffic techniques may not be suitable for botmaster
traceback.
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Embodiments of the present invention address the botmas-
ter traceback problem with a packet flow watermarking tech-
nique. These embodiments provide a practical solution that
can be used to trace low-volume botnet C&C traffic in real-
time even if it is encrypted and laundered through multiple
intermediate hosts (e.g., IRC servers, stepping stones, prox-
ies). Some of the embodiments assume that the tracer has
control of a single rogue bot in the target botnet, and that this
bot can send messages in response to a query from the bot-
master. To trace the response traffic back to the botmaster, the
rogue bot transparently injects a unique watermark into its
response. Tracing the watermarked response traffic via moni-
toring nodes across the Internet, one may locate the botmas-
ter.

To embed the watermark, the lengths of randomly selected
pairs of packets may be adjusted such that the length differ-
ence between each packet pair will fall within a certain range.
Some of the disclosed embodiments utilize hybrid length-
timing watermarking to track encrypted botnet traffic that
mixes messages from multiple bots. These embodiments
require far less traffic volume to encode high-entropy water-
marks. The effectiveness of some embodiments was empiri-
cally validated using real-time experiments on live IRC traffic
through Planetlab nodes and public IRC servers across dif-
ferent continents. Two of the embodiments achieved a virtu-
ally 100% watermark detection rate and a 10~ false positive
rate with only a few dozen packets. This approach has the
potential to allow real-time botmaster traceback across the
Internet.

Botmaster Traceback Model:

Because most botnets currently in the wild are IRC-based,
disclosed embodiments focus on tracing the botmaster in the
context of IRC-based botnets. Nevertheless, one skilled in the
art will recognize that the disclosed flow watermarking trace
approach is applicable to any interactive botnet traffic.

Botnets and Stepping Stones

Bots have been covered extensively in the existing litera-
ture. The typical bot lifecycle starts with exploitation, fol-
lowed by download and installation of the bot software. At
this point, the bot contacts the central C&C server run by the
botmaster, where botmaster can execute commands and
receive responses from his botnet.

Botmasters rarely connect directly to their C&C servers
since this would reveal their true IP address and approximate
location. Instead, they use a chain of stepping stone proxies
that anonymously relay traffic. Popular proxy software used
for this purpose is SSH, SOCKS, and IRC BNCs (such as
psyBNC). Since the stepping stones are often controlled by
the attacker, they may not have an audit trail in place or other
means of tracing the true source of traffic. However, there are
two properties of stepping stones that can be exploited for
tracing purposes: 1) the content of the message (the applica-
tion-layer payload) is not modified and 2) messages are
passed on immediately due to the interactive nature of IRC.
Consequently, the relative lengths of messages and their tim-
ings are preserved, even if encryption is used. In the case of
encryption, the message lengths may be rounded up to the
nearest multiple of the block size.

Tracking the Botmaster by Watermarking Botnet Traffic

Botmaster traceback embodiments exploit the fact that the
communication between the IRC-based bots and the botmas-
ter is bidirectional and interactive. Whenever the botmaster
issues commands to a bot, the response traffic will eventually
return to the botmaster after being laundered and possibly
transformed. Therefore, if the response traffic from a bot to
the botmaster can be watermarked, one can eventually trace
and locate the botmaster. Since the response traffic being
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tracked may be mixed with other IRC traffic, the target traffic
may need to be able to be isolated. With unencrypted traffic,
this can be achieved by content inspection, but encrypted
traffic presents a challenge which may be addressed with a
hybrid length-timing algorithm.

FIG. 1 is system diagram showing a botmaster traceback
model that watermarks botnet response traffic. This diagram
assumes control of a rogue bot 110, which could be a honey-
pot host that has been compromised and has joined a botnet.
The rogue bot 110 watermarks its outgoing private message
(PRIVMSG) traffic 115 in response to commands from the
botmaster 130. As with any traceback approach, the water-
mark tracing scheme needs support from the network 150.
Network support could come from, for example, cooperating
monitor nodes (140-142) across the Internet 150, which will
inspect the passing traffic for specified watermark(s) in the
watermarked message 120 and report back whenever they
find it. Note that this approach does not require a global
monitoring capability. If there are uncooperative or unmoni-
tored areas, one or more links along the traceback path might
be lost. However, the trail may be picked up again once the
watermarked traffic re-enters a monitored area. In general,
this approach should handle the absence of a global monitor-
ing capability. The tracer may share the desired watermark
with all monitor nodes prior to sending the watermarked
traffic 120. In some embodiments, the sharing may be secure.
This enables the monitors to report ‘sightings’ of the water-
mark in real-time and may require only a single watermarked
flow 120 to complete a trace.

Length-Based Watermarking Scheme

The disclosed watermarking scheme is particularly useful
for a low-traffic, text-based channel such as the one between
a bot and its botmaster. The design and analysis of both the
length-only (unencrypted traffic) and the length-timing
hybrid algorithms (encrypted traffic) will be described.
Example encoding and decoding formulas for both algo-
rithms are disclosed. The issue of false positives and false
negatives will then be addressed.

The terms ‘message’ and ‘packet’ are used interchangeably
since a typical botnet C&C message is usually small (less than
512 bytes) and mat fit into a single packet.

Basic Length-Based Watermarking Scheme

Watermark Bit Encoding: Given a packet flow f of n pack-
> 1t 1s desired to encode an 1-bit watermark
W=w,; ; W, using 2I=n packets. A pseudo-
random number generator (PRNG) with seed s may be used to
randomly choose 21 distinct packets from Py; : @ : Pn.
The 21 packets may be used to form 1 packet palrs

< P,, e_) (i=0, .. .1-1) such that r,=e,. In some embodiments
thiszpaizring may be done with randomly selected packets. In
this descnptlon packet P, is called a reference packet and
packet P, is called an encodlng packet. The PRNG may be
used to randomly assign watermark bit w, (0=k=1-1) to

packet pair < P, Pei> < I, W, k> is used here to represent that

packet pair < P, Pei> is assigned to encode watermark bit w.
To encode the watermark bit w, into packet pair

< P,.P, > the length of the encoding packet P, may be modi-
ﬁed by addlng padding characters to achieve a spe01ﬁc length
difference to its corresponding reference packet P,.. The pad-
ding characters could be invisible (such as Whltespace) or
visible characters and they can be inserted in random loca-
tions within the message. This would make it difficult for the
adversary to detect the existence of the padding. L.et1, and 1,
be the packet lengths of the watermark encoding and refer-
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ence packets respectively, Z=l -1, be the length difference,
and [>0 be the bucket size. The watermark bit encoding
function is defined as:

el 1, Lwy=1 +[(05+w)L—(I~1,)] mod 2L (1)

which returns the increased length of watermark encoding
packet given the length of the reference packet 1, the length of
the encoding packet 1., the bucket size [, and the watermark
bit to be encoded w.

Therefore,

(05 +w)L—

(ellrs ex L w) = )mod2L = {”E T -
(0.5+wL-

= {(le —l)+ @1

={(0.5 + w)Ljmod2L

@

}mo dZL}modZL

}modZL}modZL

=(w+0.5)L

This indicates that the packet length difference 7Z=1-1,,
after 1, is adjusted by the watermark bit encoding function
e(l,,1,,L, w), falls within the middle of either an even or odd
numbered bucket depending on whether the watermark bit w
is even or odd.

Watermark Bit Decoding:

Assuming the decoder knows the watermarking param-
eters: PRNG, s, n, I, W and L, the watermark decoder can

obtain the exact pseudo-random mapping < I, €, k> as that
used by the watermark encoder. The following watermark bit
decoding function may be used to decode watermark bit w,
from the packet lengths of packets P, and P, :

©)

-1
ai,, l., L) = {TJmodZ

The equation below proves that any watermark bit w
encoded by the encoding function defined in equation (1) will
be correctly decoded by the decoding function defined in
equation (3).

)

dlly, ey, le, Lw), L) =

{e(l Lo, Lw)—1, JmodZ

[(0.5 +w)L - (l —l)]mod2L

mod2

[ (le = L,)mod2L +

(05+w)LJ

w

Assume the lengths of packets P, and P, (1, and 1,) have
been increased for x,Z0 and x,Z0 bytes respectively when
they are transmitted over the network (e.g., due to padding of
encryption), then x_—x, is the distortion over the packet length
difference 1,-1,. Then the decoding with such distortion is:

elly Loy Ly w) = 1 + (x,
L

®

-x)
mod2

d(ly + X, e(lpy ey L W) + X, L) = {
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-continued
Xe
=w+ [0.5 +

;x, JmodZ

Therefore, the decoding with distortion will be correct if
and only if:

(=0.542{)L=x ~x,<(0.5+2i)L

=re

(6

Specifically, when the magnitude of the distortion Ix, -
x,1<0.5 L, the decoding is guaranteed to be correct.

Watermark Decoding and Error Tolerance

Given a packet flow f and appropriate watermarking
parameters (PRNG, s, n, 1, W and L) used by the watermark
encoder, the watermark decoder can obtain a I-bit decoded
watermark W' using the watermark bit decoding function
defined in equation (3). Due to potential distortion of the
packet lengths in the packet flow f, the decoded W' could have
a few bits different from the encoded watermark W. A Ham-
ming distance threshold h=0 is introduced here to accommo-
date such partial corruption of the embedded watermark.
Specifically, packet flow f will be considered to contain
watermark W if the Hamming distance between W and W": H
(W, W") is no bigger than h.

Watermark Collision Probability (False Positive Rate)

No matter what watermark W and Hamming distance
threshold h is chosen, there is always a non-zero possibility
that the decoding W' of a random unwatermarked flow hap-
pens to have no more than h Hamming distance to the random
watermark W chosen. In other words, watermark W is
reported to be found in an unwatermarked flow. This case is
referred to as a watermark collision.

Intuitively, the longer the watermark and the smaller the
Hamming distance threshold, the smaller the probability of a
watermark collision. Assuming a randomly chosen a 1-bit
watermark, and 1-bits decoding from random unwatermarked
flows, any particular bit decoded from a random unwater-
marked flow should have 0.5 probability to match the corre-
sponding bit of the random watermark chosen. Therefore, the
collision probability of 1-bit watermark from random unwa-
termarked flows with Hamming distance threshold h is:

M

The watermark collision probability distribution was
empirically validated with the following experiment. First a
PRNG and a random seed number s was used to generate 32

packet pairs < 1, el.> and pseudo-randomly assign each bit of
a 32-bit watermark W to the 32 packet pairs, we then encode
the 32 bit watermark W into a random packet flow f. An
attempt was then made to decode the watermarked flow f'
with 1,000 wrong seed numbers. Given the pseudo-random
nature of the selection of packet pairs, decoding a water-
marked flow with the wrong seed is equivalent of decoding an
unwatermarked flow, which can be used to measure the water-
mark collision probability.

FIG. 2A illustrates the number of matched bits from the
decoding with each of the 1,000 wrong seed numbers. It
shows that the numbers of matched bits are centered around
the expected value of 16 bits, which is half of the watermark
length. Based on these results and the experimental data, a
Hamming distance threshold of h=4 (28 bits) was chosen as
shown on the graph, yielding an expected false positive rate



US 8,433,796 B2

7
(FPR) of 9.64x107° according to equation (7). The average
230 and threshold 220 are shown in this graph. FIG. 2B shows
the distributions of the measured and the expected number of
matched bits. The graph illustrates that the distribution of the
measured number of matched bits is close to the expected
binomial distribution with p=0.5 and n=32.

Watermark Loss (False Negative)

The length-only encoding scheme (with-out the hybrid
timing approach) is highly sensitive to having the correct
sequence of messages. If any messages are added or deleted in
transit, the watermark may be lost in that flow. However, the
chance of this happening is very remote since the encoding
takes place at the application layer, on top of TCP. By its
nature, TCP guarantees in-order delivery of all packets and
their contents, so a non-intentional watermark loss is very
unlikely. One skilled in the art will also recognize that this
scheme may also be used in other types of packet traffic such
as in unreliable traffic such as UDP.

In the case of active countermeasures, the scheme can
tolerate distortion as long as Ix,—x,/<0.5 L, as described by
inequality (6). This property is the result of aiming for the
center of each bucket when encoding. However, if an active
adversary drops, adds, or reorders messages, the watermark
may be lost unless additional redundancy is in place or the
length-timing algorithm is used.

Hybrid Length-Timing Watermarking for Encrypted Trat-
fic:

By their nature, IRC-based botnets have many bots on one
channel at once, many of them joining, parting, or sending
data to the botmaster simultaneously. In this case, the water-
marked messages from a rogue bot may be mixed with unwa-
termarked messages from other bots. These unwatermarked
messages from others are called chaff messages. In order to
reliably decode the embedded watermark, chaff messages
may need to be filtered out as much as possible.

When the C&C traffic is unencrypted, it may be easy for the
watermark decoder to filter out chaff based on the sender
nicks in the messages. However, if the traffic is encrypted
(e.g., using SSL/TLS), content inspection may not be relied
upon to identify chaff messages. To address this new chal-
lenge in filtering out chaft, use of another dimension of infor-
mation—the packet timing—to filter out chaff may be used.

The basic idea is to send the watermark encoding packets at
a specific time (e.g., t,). Assuming the network jitter d is
limited, the range of potential packets used for decoding may
be narrowed to

é é
~ 30+ 3)

If 8>0 is small, then the chances that some chaff packet
happens to fall within the range

is small. This means the watermark may be decoded correctly
even if there are substantial encrypted chaff packets.

Hybrid Length-Timing Watermark Encoding

The hybrid length-timing watermark bit encoding process
is basically the same as that of the length-based watermarking
scheme. The difference is that with hybrid length-timing
Watermarklng, each watermarked packet P, is sent out at a
precise time. Specifically, the watermark blt encoding func-
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tion defined in equation (1) may be used to adjust the length
of the watermark encoding packet P,. A pseudo-random
number generator PRNG and seed s, may be used to generate
the random time t, at which P, be sent out.

An implicit requlrement for this hybrid length-timing
watermarking scheme is that one may need to know when
each watermark encoding packet P, will be available. In the
watermark tracing model, the tracer owns a rogue bot who can
determine what to send out and when to send it. Since there is
full control over the outgoing traffic, the hybrid length-timing
scheme may be used to watermark the traffic in real-time.

Watermark Decoding

When decoding the encrypted botnet traffic, it may not be
possible to know which packet is a watermark encoding
packet P, . However, given the PRNG and s,, the approximate
time t, at which the watermark encoding packet P, should
arrive 1s know. All packets in the time interval

e

may beused to decode the watermark. Specifically, the sum of
the lengths of all the packets in the time interval

may be used as the length of the watermark encoding packet
and applied to the watermark bit decoding function (3).

Due to network delay jitter and/or active timing perturba-
tion by the adversary, the exact arrival time of watermark
encoding packet P, may be different from t, . Fortunately, the
decodlng can self- synchronlze with the encodlng by leverag-
ing an intrinsic property of the hybrid length-timing water-
marking scheme. Specifically, if the decoding of a water-
marked flow uses the wrong offset or wrong seeds (s and s,),
then the decoded 1-bit watermark W' will almost always have
about 1/2 bits matched with the true watermark W. This pro-
vides a way to determine if the correct offset is being used. A
range of possible offsets may be attempted the best decoding
result selected for use.

Implementation and Experiment

To validate the practicality of our watermarking scheme,
both the length-only algorithm (unencrypted traffic) and the
length-timing hybrid algorithm (encrypted traffic) were
implemented. To let our watermarking proxy interact with a
realistic but benign IRC bot, a sanitized version of Agobot
was obtained from its source code, containing only benign
IRC communication features. The sanitized Agobot was run
on a local machine to generate benign IRC traffic to test the
effectiveness of the watermarking scheme across public IRC
servers and PlanetLab nodes. At no time was malicious traffic
sent to anyone in the course of the experiments.

Length-Only Algorithm (Unencrypted Traffic)

The length-only algorithm was implemented in a modified
open-source IRC proxy server and a series of experiments
were run using the sanitized Agobot and public Internet IRC
servers. The watermark successfully recovered from unen-
crypted traffic in all ten of the trials.

Modified IRC Bouncer

To achieve greater flexibility, the watermarking function-
ality was added to an existing IRC bouncer (BNC) package,
psyBNC. Having the watermarking implemented on a proxy
server allows all bots conforming to the standard IRC proto-
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col to be used. It eliminated the need to have access to a bot’s
source code to add the watermarking functionality: outgoing
traffic was modified by the BNC after the bot sent it.

In order for psyBNC to act as a transparent proxy, it needs
to be configured identically to the bot. The information
required consists of the C&C server’s hostname, the port, and
an IRC nick consistent with the bot’s naming scheme. This
information can be gathered by running the bot and monitor-
ing the outgoing network traffic. In order to trick the bot into
connecting to the BNC rather than to the real C&C host, the
local DNS cache may need to be updated so that a lookup of
the C&C server’s hostname resolves to the IP of the BNC.

Once ithas been configured with this information, the BNC
should be completely transparent to the bot: when it starts up,
the bot is automatically signed into the real C&C server by the
BNC. The bot now joins the botnet channel as if it was directly
connected and then waits for the botmaster’s instructions. All
PRIVMSG traffic from the bot to the C&C server (and by
extension, to the botmaster) is watermarked by the transpar-
ent BNC in between.

Experiment and Results

To test the watermarking scheme, an experiment was
devised that emulates the conditions of an Internet-wide bot-
net as closely as possible. FIG. 3 is a block diagram of the
experimental setup. To simulate the botmaster 330 and step-
ping stones, Planetlab nodes in California 332 and Germany
330 were used. A live, public IRC server in Arizona 334 was
used to act as a C&C host, creating a uniquely-named channel
for the experiments. The channel consisted of two IRC users:
the Test Bot 310 was running a copy of the sanitized Agobot
and the Botmaster 330 was acting as the botmaster. As the
diagram indicates, all traffic 315 sent by the Test Bot 310
passes through the psyBNC server (WM Proxy 320) where
the watermark is injected. The distances involved in this setup
are considerable: the watermarked traffic 325 traverses liter-
ally halfthe globe (12 time zones) before reaching its ultimate
destination in Germany, with a combined round-trip time of
292 milliseconds on average (at the time of our experiment).

The objective is to be able to decode the full watermark in
the watermarked traffic 325 captured at the Stepping Stone
332 and Botmaster 330. Since only PRIVMSG traffic from
the Test Bot 310 is watermarked, all other traffic (chaff) is
filtered out before decoding. Most of this chaff consists of
messages from other users on the channel, PING/PONG
exchanges, and JOIN/PART notifications from the channel.
There could be additional chaff on the same connection if the
botmaster 330 is logged into multiple channels on the same
IRC server 334. However, filtering out the chaff is trivial in
the absence of encryption since all IRC messages contain the
sender’s nick. Therefore, the watermarked packets may be
isolated based on the Test Bot’s nick.

During our experiments, the psyBNC proxy 320 was con-
figured to inject a 32-bit watermark into a 64-packet stream
315. To generate traffic 315 from the Test Bot 310, the Bot-
master 330 logged in and issued the commands.list com-
mand, causing the test bot 310 to send a list of all valid bot
commands and their descriptions. All traffic leaving the WM
Proxy 325 was captured, arriving at the Stepping Stone 332,
and arriving at the Botmaster 330. In ten trials with different
(random) 32-bit watermarks, the full 32-bit watermark at all
three monitoring locations: the WM Proxy 325 in Maryland,
the Stepping Stone 332 in California, and Botmaster 330 in
Germany were decoded correctly.

Hybrid Length-Timing Algorithm (Encrypted Tratfic)

To test the hybrid length-timing algorithm, we imple-
mented a simple IRC bot that sends length-watermarked mes-
sages out at specific intervals. We used a “chaft bot” on the
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channel to generate controlled amounts of chaff. We were
able to recover the watermark with a high success rate, even
when high amounts of chaff were present.

Hybrid Length-Timing Encoder

The hybrid encoding algorithm as implemented as a Perl
program which reads in a previously length-only water-
marked stream of messages and sends them out at specific
times. To achieve highly precise timing, the Time::HiRes Perl
package was used, which provides microsecond-resolution
timers. At startup, the program uses the Mersenne Twister
PRNG (via the Math::Random::MT package) to generate a
list of departure times for all messages to be sent. Each
message is sent at arandomly chosen time between 2 and 2.35
seconds after the previous message. The 2-second minimum
spacing avoids IRC server packet throttling (discussed later).

Hybrid Length-Timing Decoder

The hybrid decoding script was also written in Perl, relying
on the PCAP library to provide a standardized network traffic
capture mechanism (via the Net::Pcap module). The program
reads in a stream of packets (either from a live interface or
from a PCAP file), then performs a sliding-window offset
self-synchronization process to determine the time t1 of the
first watermarked packet. To find the correct t1, the program
steps through a range of possible values determined by the
offset, max, and step parameters. It starts with t1=offset,
incrementing t1 by step until t1=(offset+max). It decodes the
full watermark sequence for each tl, recording the number of
bits matching the sought watermark W. It then chooses the t1
that produced the highest number of matching bits. If there
are multiple t1 values resulting in the same number of match-
ing bits, it uses the lowest value for t1. FIG. 4 illustrates the
synchronization process, showing that the correct t1 is near 6
seconds: 5.92 sec has 32 correct bits. For all incorrect t1
values, the decoding rate was significantly lower, averaging
14.84 correct bits (530).

Experiment and Results

The experiment setup in this case was similar to the unen-
crypted experiment described earlier and is shown in FIG. 5.
The three main differences were: 1) a single Source computer
520 producing watermarked traffic 525 on its own replaced
the Test Bot 310 and WM Proxy 320; 2) the connection
between the Botmaster 330 and the IRC server 534 (via
StepStone 332) was encrypted using SSL/TLS; and 3) a dif-
ferent IRC server 534 was used because the one in Arizona
334 does not support SSL/TLS connections. The IRC server
534 in this case happens to be located in Germany, not in the
same place as the Botmaster. FIG. 5 shows the experiment
setup. In this configuration, the distances involved are even
greater, with the watermarked traffic 525 traversing the
equivalent of the entire globe (24 time zones). The combined
round-trip time from Source 525 to Botmaster 330 was 482
milliseconds (on average) at the time of the experiment.

To handle encryption, the parameters for the length-only
algorithm were adjusted to ensure that the bucket size
matched or exceeded the encryption block size. Most SSL/
TLS connections use a block size of 128 bits (16 bytes),
though 192 and 256 bits are also common. To ensure that each
added bucket also causes another encrypted block to be added
to the message, the bucket size has to be greater than or equal
to the block size. For this experiment, a bucket size of 16 bytes
was used, which was sufficient for the 128-bit block size used
in the SSL/TLS connection. For compatibility with the larger
block sizes (192 and 256 bits), a bucket size 0’32 bytes can be
used, etc.

For the experiments, the Source 520 produced a stream of
64 packets 525, containing a randomly generated 32-bit
watermark. The Chaff Bot 570 produced a controlled amount
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of background traffic 575, spacing the packets at random
intervals between 1 and 6 seconds (at least 1 second to avoid
throttling). In addition to the Control run (no chaff), five
different chaff levels (Chaff 1 to 5) were run. The number
refers to the maximum time between packets (not including
the minimum 1-second spacing). For example, for the Chaff 1
run, packets were sent at a random time between 1 and 2
seconds. Thus, one packet was sent on average every 1.5
seconds, resulting in a chaff rate of approximately 1=1:5=0:
667 packets/sec.

Network traffic was captured in three places: 1) traffic 575
& 525 from Source 525 and Chaff Bot 570 to IRC Server 534,
2) traffic 536 arriving at StepStone 332 from IRC Server 534;
and 3) traffic 538 arriving at Botmaster 330 from StepStone
332. Traffic in all three locations includes both watermark and
chaff packets. The traffic was decoded at each location,
recording the number of matching bits. For decoding, a value
of 200 milliseconds was used for the timing window size 8
and a sliding offset range from O to 10 seconds. This o value
was large enough to account for possible jitter along the
stepping stone chain but small enough to make it unlikely that
a chaff packet appears within 8 of an encoding packet. The
actual chaff rate based on the departure times of each chaff
packet was also measured, and these were very close to the
expected rates based on an even distribution of random depar-
ture times. This process was repeated three times for each
chaff level, resulting in a total of 18 runs. Experiment results
are summarized in the table in FIG. 6, with each column
representing the average values from three trials.

The decoding along the stepping-stone chain for all chaff
rates of 0.5 packets/sec and below were near-perfect. Only
when the chaff rate rose above 0.5 packets/sec did the chaff
start having a slight impact, bringing the decoding rate down
to an average of 31 bits. The overall average decoding rate at
the StepStone 332 and Botmaster 330 was 31.69 bits, or 99.05
percent. The lowest recorded decoding rate during the experi-
ments was 28 bits, so that a Hamming distance threshold of
h=4 could be used to obtain a 100 percent true positive rate
(TPR) and a false positive rate (FPR) of 9.64x107S.

The most surprising result is that in all cases where chaff
was present, the decoding rate was worse at the Source than
downstream at the StepStone 332 and Botmaster 330. After
examining the network traces in detail, it was realized that this
behavior was due to the presence of traffic queuing and throt-
tling on the IRC Server 534. To avoid flooding, IRC servers
are configured to enforce minimum packet spacings, and
most will throttle traffic at 0.5 to 1 packets/sec. To confirm
this behavior, packets were sent to the IRC Server 534 in
Germany at random intervals of 100 to 300 milliseconds. For
the first 5 seconds, packets were passed on immediately, but
after that the throttling kicked in, limiting the server’s outgo-
ing rate to 1 packet/sec. After about 2 minutes, the server’s
packet queue became full with backlogged packets, and it
disconnected the client. FIG. 7 illustrates the effect of throt-
tling on the packet arrival times, including the 5-second
“grace period” at the beginning.

Inthe context of the hybrid encoding scheme, IRC message
queuing is highly beneficial because it dramatically reduces
the chances that chaff 575 and encoding packets 525 will
appear close to each other. At the Source, packets appear at
the exact intervals they are sent, which could be less than
and therefore affect decoding. However, this interval will be
increased due to queuing by the IRC server 534. By the time
the packets reach the StepStone 332 and Botmaster 330, they
no longer affect decoding because they are more than  apart.
In the experiments, it was observed that the IRC server 534
introduced a distance of at about 130 milliseconds between
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packets due to queuing. Since the d value was 200 millisec-
onds, this made it unlikely that two packets would arrive in the
same slot.

Discussion

The experiments show that embodiments of the disclosed
watermarking scheme is effective in tracing the botmaster of
IRC-based botnets, which are still the predominant type in the
wild. The watermark can be recovered with a high degree of
accuracy even when the watermarked botnet C&C traffic is
encrypted across multiple stepping stones and mixed with
other flows.

In theory, embodiments of the flow watermarking tech-
nique could be applied to trace any realtime and interactive
botnet C&C traffic. Therefore, it could be used to track the
botmaster of peer-to-peer (P2P) botnets which have started
appearing recently. However, HI' TP-based botnets present a
much higher level of traceback difficulty: the messages do not
get passed from the bot to the botmaster in realtime. They are
typically stored on the C&C server until the botmaster
retrieves them in bulk, usually over an encrypted connection
such as SSH. Due to this, any approach that relies on proper-
ties of individual packets (such as length and timing) may be
unsuccessful.

Once the botmaster become aware of the flow watermark-
ing tracing approach, he may want to corrupt the embedded
watermark from intermediate stepping stones. However,
since the padding characters could be almost any character
and they are inserted randomly in the botnet message, it
would be difficult for any intermediate stepping stone to
identify and remove the padding characters without knowing
the original unwatermarked message. The botmaster may be
able to detect and identify the padding if he knows exactly
what he is expecting for. However, once he receives the water-
marked message, the watermarked message has already left
the complete trail toward the botmaster. The botmaster could
have intermediate stepping stones to perturb the length of the
passing botnet messages by adding random padding such as
white space. Since the watermark is embedded in the length
difference between randomly chosen packets, the negative
impact of the padding by the adversary tends to cancel each
other. The negative impact may be further mitigated by using
redundant pairs of packets to encode the watermark. How-
ever, this would increase the number of packets needed. So
this is essentially a tradeoff between the robustness and the
efficiency.

As previously discussed, disclosed embodiments requires
at least partial network coverage of distributed monitoring
stations. This is a common requirement for network traceback
approaches, especially since the coverage does not need to be
global. The accuracy of the trace may be proportional to the
number and placement of monitoring nodes.

A contribution of the presently disclosed embodiments is
that they address the four major obstacles in botmaster trace-
back: 1) stepping stones, 2) encryption, 3) flow mixing and 4)
a low traffic volume between bot and botmaster. Embodi-
ments of the watermarking traceback approach are resilient to
stepping stones and encryption, and require only a small
number of packets in order to embed a high-entropy water-
mark into a network flow. The watermarked flow can be
tracked even when it has been mixed with randomized chaff
traffic. Due to these characteristics, this approach is uniquely
suited for real-time tracing of the interactive, low-traffic bot-
net C&C communication between a bot and its botmaster.

The watermarking traceback was both analytically and
experimentally verified. In trials on public Internet IRC serv-
ers, embodiments were able to achieve virtually a 100 percent
TPR with an FPR of less than 10—, Embodiments may trace
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a watermarked IRC flow from an IRC botnet member to the
botmaster’s true location, even if the watermarked flow 1) is
encrypted with SSL/TLS; 2) passes through several stepping
stones; and 3) travels tens of thousands of miles around the
world.

Alternative Embodiments

Several alternative embodiments will be disclosed with
reference to FIGS. F8, 9 and 10. FIG. 8 shows a system
diagram of an aspect of an embodiment of the present inven-
tion. FIG. 9 is a block diagram of a honeynet host 810 shown
in FIG. 8.

FIG. 8 is adiagram of a system 800 for locating a botmaster
820 connected to network 840 such as the Internet. The sys-
tem several other elements connected to the network includ-
ing a honeynet 810, cooperating node(s) (831, 832, 833 &
839), and a path determination processor 850.

The honeynet host 810 is configured to join a botnet. The
honeynet host 810 is configured to generate a watermarked
packet flow 824 by injecting a watermark in an outgoing
packet flow 915 in response to commands 822 from the bot-
master 820. The watermark may include a multitude of water-
mark bits. The honeynet host 810 may include a packet selec-
tion module 930, a packet pair formation module 940 and a
watermark encoding module 950.

The packet selection module 930 is configured to choose at
least two distinct packets 935 from the outgoing packet flow
915.

The packet pair formation module 940 is configured to
form at least one packet pair 945 from the distinct packets
935. Each packet pair(s) 945 include a reference packet and
an encoding packet.

The watermark encoding module 950 is configured to
encode each of the watermark bits to a different one of the
packet pairs 945 by increasing the length of the encoding
packet whenever the watermark bit has a predetermined
value.

The cooperating node(s) (831, 832, 833 & 839) are con-
figured to inspect passing packet flows for the watermarked
packet flow and generate tracking information related to
detection of the watermarked packet flow. Specifically, the
cooperating node(s) (831, 832, 833 & 839): determining a
reference packet length by measuring the length of the refer-
ence packet; determine an encoding packet length by mea-
suring the length of the encoding packet; and determines
values for the watermark bits. The value of the watermark bits
may be determined to be predetermined value if the differ-
ence between the encoding packet length and the reference
packet length is between a range defined by a predetermined
formula.

The path determination processor 850 is configured to
analyze the tracking information to locate a path 855 taken by
the watermarked packet flow 824.

Additionally, the embodiment may be configured to handle
encrypted packets. In this configuration, the honeynet host
810 places the reference packet in the watermarked packet
flow by at a time tr and the encoding packet in the water-
marked packet flow at a time te. The cooperating node(s)
(831, 832, 833 & 839) calculate the length of the reference
packet as the sum of all packet lengths in the watermarked
packet flow 824 during the duration (tr-/29 to tr+%2 9). Like-
wise, the cooperating node(s) (831, 832, 833 & 839) calculate
the length of the encoding packet as the sum of all packet
lengths in the watermarked packet flow 824 during the dura-
tion (te 129 to te+42d). The variable 3 represents timing jitter
in the watermarked packet flow 824.
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Some embodiments of the present invention may be
embodied as a computer readable storage medium containing
a series of instructions that when executed by one or more
processors causes the one or more processors to perform a
process to locate a botmaster on a network. FIG. 10 is a flow
diagram of a possible embodiment of the process. At 1010, a
watermarked packet flow may be generated by a honeynet
host that has joined a botnet. The watermarked packet flow
may be generated by injecting a watermark into an outgoing
packet flow in response to commands from the botmaster. The
outgoing packet flow may include at least part of a
PRIVMSG. The watermark can comprise a multitude of
watermark bits.

The watermark applied to the outgoing packet flow by a
series of actions. At 1012 distinct packets may be chosen from
the outgoing packet flow. These distinct packets may be cho-
sen randomly. Packet pair(s) may be formed from the distinct
packets at 1014. Again, the distinct packets used to form the
packet pair(s) may also be random. Each of the packet pair(s)
preferably includes a reference packet and an encoding
packet. At 1016, each of the watermark bit(s) may be encoded
to a different packet pair by increasing the length of the
encoding packet when a watermark bit has a predetermined
value. The length of the encoding packet may be increased in
many ways including, for example, by adding padding char-
acters to the encoding packet. The padding characters may be
invisible characters. Additionally, the padding characters are
inserted in random locations within the encoding packet. The
increasing of the length of the encoding packet may be per-
formed according to a predefined formula such as, for
example, the formulas discussed earlier in this disclosure.

Cooperating node(s) may inspect passing packet flow for
the watermarked packet flow at 1020 and create tracking
information related to detection of the watermarked packet
flow in the passing packet flow. During the inspection pro-
cess, reference packet length(s) and encoding packet
length(s) may be measured. Watermark bits may be detected
by determining that one of the multitude of watermark bits
has the predetermined value if the difference between an
encoding packet length and its related reference packet length
is between a defined range. The defined range may be defined
by a predetermined formula.

At 1030, a path determination processor may analyze the
tracking information to locate a path taken by the water-
marked packet flow. It in envisioned that a watermarked
packet flow will normally travel through intermediate nodes.
There may be gaps of path information due to traffic through
unmonitored nodes. In those cases, the path determination
processor may fill in unreported links in the path based on
information from cooperating nodes that surround the
unmonitored nodes. Even if most of the nodes are not moni-
tored, useful information may be obtained by the last coop-
erating node that the watermarked packet flow passed
through.

In some situations, outgoing packet flow may be encrypted
while other times the outgoing packet flow may be unen-
crypted. An alternative embodiment may utilize hybrid
length-time watermarking that can handle both encrypted and
unencrypted packet flows. In this case, the reference packet is
placed in the watermarked packet flow at a time t,; and the
encoding packet is placed in the watermarked packet flow at
a time t,. Now, the length of the reference packet can be
calculated as the sum of all packet lengths in the watermarked
packet flow during the duration (t,-%23 to t,+%28) and the
length of the encoding packet can be calculated as the sum of
all packet lengths in the watermarked packet flow during the
duration (t,%20 to t,+'29). As stated earlier, the variable &
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represents timing jitter in the watermarked packet flow. Vari-
ables t, and t, may be offset to account for various timing
differences such as delays between the honeynet host and
cooperating node(s) and the timing jitter. In fact, an operating
offset fort, and t, may be determined by selecting the offset of
a multitude of offsets that produces the highest watermark
decoding success rate from the watermarked packet flow.

In this specification, “a” and “an” and similar phrases are to
be interpreted as “at least one” and “one or more.”

Many of the elements described in the disclosed embodi-
ments may be implemented as modules. A module is defined
here as an isolatable element that performs a defined function
and has a defined interface to other elements. The modules
described in this disclosure may be implemented in hardware,
software, firmware, wetware (i.e. hardware with a biological
element) or a combination thereof, all of which are behavior-
ally equivalent. For example, modules may be implemented
as a software routine written in a computer language (such as
C, C++, Fortran, Java, Basic, Matlab or the like) or a model-
ing/simulation program such as Simulink, Stateflow, GNU
Octave, or LabVIEW MathScript. Additionally, it may be
possible to implement modules using physical hardware that
incorporates discrete or programmable analog, digital and/or
quantum hardware. Examples of programmable hardware
include: computers, microcontrollers, microprocessors,
application-specific integrated circuits (ASICs); field pro-
grammable gate arrays (FPGAs); and complex program-
mable logic devices (CPLDs). Computers, microcontrollers
and microprocessors are programmed using languages such
as assembly, C, C++ or the like. FPGAs, ASICs and CPLDs
are often programmed using hardware description languages
(HDL) such as VHSIC hardware description language
(VHDL) or Verilog that configure connections between inter-
nal hardware modules with lesser functionality on a program-
mable device. Finally, it needs to be emphasized that the
above mentioned technologies are often used in combination
to achieve the result of a functional module.

The disclosure of this patent document incorporates mate-
rial which is subject to copyright protection. The copyright
owner has no objection to the facsimile reproduction by any-
one of the patent document or the patent disclosure, as it
appears in the Patent and Trademark Office patent file or
records, for the limited purposes required by law, but other-
wise reserves all copyright rights whatsoever.

While various embodiments have been described above, it
should be understood that they have been presented by way of
example, and not limitation. It will be apparent to persons
skilled in the relevant art(s) that various changes in form and
detail can be made therein without departing from the spirit
and scope. In fact, after reading the above description, it will
be apparent to one skilled in the relevant art(s) how to imple-
ment alternative embodiments. Thus, the present embodi-
ments should not be limited by any of the above described
exemplary embodiments. In particular, it should be noted
that, for example purposes, the above explanation has focused
on the example(s) of locating botmasters. However, one
skilled in the art will recognize that embodiments of the
invention could be used to trace the path of packets through a
network that are destined for locations other than a botmaster.
For example, one may want to trace a packet to the destination
of a peer-to-peer communication.

In addition, it should be understood that any figures which
highlight the functionality and advantages, are presented for
example purposes only. The disclosed architecture is suffi-
ciently flexible and configurable, such that it may be utilized
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in ways other than that shown. For example, the steps listed in
any flowchart may be re-ordered or only optionally used in
some embodiments.

Further, the purpose of the Abstract of the Disclosure is to
enable the U.S. Patent and Trademark Office and the public
generally, and especially the scientists, engineers and practi-
tioners in the art who are not familiar with patent or legal
terms or phraseology, to determine quickly from a cursory
inspection the nature and essence of the technical disclosure
of the application. The Abstract of the Disclosure is not
intended to be limiting as to the scope in any way.

Finally, it is the applicant’s intent that only claims that
include the express language “means for” or “step for” be
interpreted under 35 U.S.C. 112, paragraph 6. Claims that do
not expressly include the phrase “means for” or “step for” are
not to be interpreted under 35 U.S.C. 112, paragraph 6.

What is claimed is:

1. A device, comprising one or more processors to join a
botnet by generating a watermarked packet flow by causing a
watermark to be injected into an outgoing packet flow in
response to commands from a botmaster, the watermark com-
prising a multitude of watermark bits, the watermark applied
to the outgoing packet flow by:

a) choosing at least two distinct packets from the outgoing

packet flow;

b) forming at least one packet pair from the at least two
distinct packets, each of the at least one packet pair
including a reference packet and an encoding packet;

¢) encoding each of at least one of the multitude of water-
mark bits to a different one of the at least one packet pair
by increasing the length of the encoding packet when
each of the multitude of watermark bits has a predeter-
mined value;

d) placing:

1) the reference packet in the watermarked packet flow at
atimet,; and

i1) the encoding packet in the watermarked packet flow at
atimet, and

e) wherein:

1) the outgoing packet flow is to be part of a passing
packet flow inspected by at least one cooperating node
processor, wherein the inspecting includes:

(1) calculating the length of the reference packet as
the sum of all packet lengths in the watermarked
packet flow during the duration (t,-28 to t,+129), 6
representing timing jitter in the watermarked
packet flow; and

(2) calculating the length of the encoding packet as the
sum of all packet lengths in the watermarked packet
flow during the duration (t,%2 d to t,+29);

ii) the at least one cooperating node processor is to create
tracking information related to detection of the water-
marked packet flow in the passing packet flow; and

iii) the tracking information is to be analyzed by a path
determination processor to locate a path taken by the
watermarked packet flow.

2. The device of claim 1, wherein the increasing the length
of'the encoding packet includes adding padding characters to
the encoding packet.

3. The device of claim 2, wherein the padding characters
are invisible characters.

4. The device of claim 2, wherein the padding characters
are inserted in random locations within the encoding packet.

5. The device of claim 1, wherein the increasing the length
of'the encoding packet is performed according to a predefined
formula.
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6. The device of claim 1, wherein the inspecting, by at least
one cooperating node, passing packet flow for the water-
marked packet flow further includes:

a) determining a reference packet length by measuring the

length of the reference packet; and

b) determining an encoding packet length by measuring the

length of the encoding packet.

7. The device of claim 6, wherein the inspecting, by at least
one cooperating node, passing packet flows for the water-
marked packet flow further includes determining that one of
the multitude of watermark bits has the predetermined value
if the difference between the encoding packet length and the
reference packet length is between a range defined by a pre-
determined formula.

8. The device of claim 1, wherein t, and t, are offset to
account for at least one of the following:

a) delays between a honeynet host and at least one of the at

least one cooperating node; and

b) the timing jitter.

9. The device of claim 8, wherein an operating offset for t,
and t, is determined by selecting the offset of a multitude of

20
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offsets that produces the highest watermark decoding success
rate from the watermarked packet flow.

10. The device of claim 1, wherein the outgoing packet
flow includes at least part of a private message (PRIVMSG).

11. The device of claim 1, wherein the analyzing includes
filling in unreported links in the path.

12. The device of claim 1, wherein the path travels through
at least one intermediate node.

13. The device of claim 1, wherein the outgoing packet
flow is encrypted.

14. The device of claim 1, wherein the outgoing packet
flow is unencrypted.

15. The device of claim 1, wherein the choosing at least two
distinct packets from the outgoing packet flow includes
choosing the at least two distinct packets randomly from the
outgoing packet flow.

16. The device of claim 1, wherein the forming at least one
packet pair from the at least two distinct packets includes
forming the at least one packet pair randomly from the at least
two distinct packets.



