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(57) ABSTRACT 

A computer system may be employed to verify program 
execution integrity by receiving a request to launch a program 
that has been instrumented to include at least one integrity 
marker, instantiating the program with an integrity marker 
value, and verifying the execution integrity of the program 
based on the integrity marker value and information received 
from the program during execution. A computer system may 
also be employed for program instrumentation by modifying 
the program to include at least one instruction for passing an 
integrity marker value to an operating system kernel during 
execution of the instruction. 
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PROGRAM EXECUTION INTEGRITY 
VERIFICATION FOR A COMPUTER SYSTEM 

This invention was made with government support under 
grant number CNS-0845042 funded by the National Science 
Foundation. The government has certain rights in this inven 
tion. 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application claims the bene?t of US. Provisional 
Application No. 61/405,663, ?led on Oct. 22, 2010, entitled 
“Malware Immunization” which is hereby incorporated by 
reference in its entirety. 

BRIEF DESCRIPTION OF THE SEVERAL 
VIEWS OF THE DRAWINGS 

FIG. 1 is a system diagram illustrating an example com 
puter system according to one or more embodiments of the 
present invention. 

FIG. 2 is a ?ow diagram providing a basic overview of an 
example program execution integrity veri?cation procedure 
using a malware immunization tool and a malware immuni 
zation infrastructure according to one or more embodiments. 

FIG. 3 is a ?ow diagram illustrating an example procedure 
for a malware immunization tool to instrument a program 
from an original program according to one or more embodi 
ments. 

FIG. 4 illustrates an example modi?cation of an original 
program at the assembly code level to instrument a program 
according to one or more embodiments. 

FIG. 5 illustrates an example modi?cation of a system call 
number according to one or more embodiments. 

FIG. 6 illustrates the immunization of multiple instances of 
a given program that share a common library of function calls 
according to one or more embodiments. 

FIG. 7 is a ?ow diagram illustrating an example procedure 
for a malware immunization infrastructure to verify program 
execution integrity according to one or more embodiments. 

FIG. 8 illustrates an example procedure for instantiating 
the program with the integrity marker value according to one 
or more embodiments. 

FIG. 9 illustrates an example procedure for verifying the 
execution integrity of the program based on the integrity 
marker value and information received from the program 
during execution, and for performing various post-veri?ca 
tion activity according to one or more embodiments. 

DETAILED DESCRIPTION OF EMBODIMENTS 

Various embodiments of the present invention are directed 
to the veri?cation of program execution integrity to protect 
against malware. Example embodiments are described below 
with reference to the drawings, wherein like reference numer 
als are used to refer to like elements throughout. The term 
“embodiments of the invention” does not require that all 
embodiments of the invention include the discussed feature or 
mode of operation. Alternate embodiments may be devised 
without departing from the scope of the invention, and well 
known elements of the invention may not be described in 
detail or may be omitted so as not to obscure the relevant 
details. 

In addition, the terminology used herein is for the purpose 
of describing particular embodiments only and is not 
intended to be limiting of the invention. For example, as used 
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2 
herein, the singular forms a, an,” and “the” are intended to 
include the plural forms as well, unless the context clearly 
indicates otherwise. It will be further understood that the 
terms “comprises,” “comprising,” “includes,” and/or “includ 
ing,” when used herein, specify the presence of stated fea 
tures, integers, steps, operations, elements, and/or compo 
nents, but do not preclude the presence or addition of one or 
more other features, integers, steps, operations, elements, 
components, and/or groups thereof. 

System Overview 

FIG. 1 is a system diagram illustrating an example com 
puter system according to one or more embodiments of the 
present invention. As shown, the computer system 100 may 
include user-space programs 110, an operating system kernel 
120, and various hardware components, such as a central 
processing unit 140, memory 150, and input/ output (I/O) 
devices 160. It will be appreciated that the CPU 140 is shown 
as a single unit for illustration purposes only, and may include 
one or multiple CPUs. Further, each CPU may be a single 
core processor or a multi-core processor that combines two or 

more independent processing cores. Example I/O devices 160 
may include hard disks, keyboards, computer mice, printers, 
displays, etc. 
The operating system kernel 120 generally refers to the 

component of many computer operating systems that acts as 
a bridge between software programs and the physical data 
processing performed at the hardware level. Responsibilities 
of the operating system kernel 120 may include managing the 
computer system’s 100 resources as well as the communica 
tion between hardware and software. For example, the oper 
ating system kernel 120 may manage the user-space pro 
grams’ 110 access to the CPU 140, memory 150, and I/O 
devices 160 through various functions and/or system calls. 
The memory 150 may be used to store both program 

instructions and data, and may be divided by the operating 
system kernel 120 into both “kernel space” and “user space.” 
Kernel space includes memory that may be used for running 
the operating system kernel 120, kernel extensions, and/or 
some device drivers, but is not usually made accessible to the 
user-space programs 110. User space includes memory that 
may be set up by the operating system kernel 120 for operat 
ing a user’s context of execution, processes, threads, etc. 
The user-space programs 110 may include various types of 

programs, such as applications 112 and libraries 114. The 
libraries 114 may include a variety of function calls, for 
example, which may invoke one or more system calls and 
may be shared among the applications 112. This sharing may 
allow multiple processes or threads from the applications 112 
to use a common, single copy of a given library function 
during execution to avoid unnecessary duplication of code 
stored in the memory 150 at run-time. 
As is further illustrated in FIG. 1, the computer system 100 

may be exposed to one or more types of malware 50, such as 
viruses, worms, botnets, rootkits, trojans, spyware, keylog 
gers, etc., that may attempt to access the computer system 100 
through the user- space programs 1 1 0. To protect against mali 
cious actions of the malware 50, the user-space programs 110 
may be specially instrumented, according to various tech 
niques disclosed herein, by a malware immunization tool 60 
such that a malware immunization infrastructure 130 oper 
ated by the operating system kernel 120 may verify the execu 
tion integrity of s given user-space program 110 before grant 
ing it control ofthe CPU 140, memory 150, I/O devices 160, 
etc. 
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For illustration purposes, the malware immunization infra 
structure 130 is shown as a component of the operating sys 
tem kernel 120. However, it will be appreciated that the mal 
ware immunization infrastructure 130 may be implemented 
in other embodiments as an entirely separate entity from the 
operating system kernel 120. In still other embodiments, the 
operating system kernel 120 may entirely sub sume the opera 
tions of the malware immunization infrastructure 130. For 
example, the operating system kernel 120 may be specially 
instrumented to perform the operations otherwise attributed 
herein to the malware immunization infrastructure 130. 

Similarly, the malware immunization tool 60 is shown for 
illustration purposes as being separate from the computer 
system 100. However, in general, the malware immunization 
tool 60 may be separate from or integral to the computer 
system 100, and may be operated independently or at the 
direction of the operating system kernel 120, as shown by the 
dashed line in FIG. 1. In some embodiments, the malware 
immunization tool 60 may be located remotely from the com 
puter system 100 and be implemented as, or operated by, a 
separate computer system (not shown). In some embodi 
ments, the malware immunization tool 60 may be imple 
mented as, or otherwise include, a user level utility, such as a 
compiler. 

FIG. 2 is a ?ow diagram providing a basic overview of an 
example program execution integrity veri?cation procedure 
using the malware immunization tool 60 and the malware 
immunization infrastructure 130 according to one or more 
embodiments. In the illustrated example, the malware immu 
nization tool 60 produces an instrumented program 220 from 
an original program 210 that is modi?ed, as described herein, 
to protect it against various control ?ow hijacking attacks that 
may be mounted by the malware 50, such as buffer over?ow 
attacks, return-to-libc attacks, return-oriented exploits, etc., 
in an attempt to gain access to the CPU 140, memory 150, I/O 
devices 160, etc. The instrumented program 220 may then be 
stored among the user-space programs 110 for operation on 
the computer system 100. 
As will be described below in more detail, the malware 

immunization infrastructure 130 may subsequently exchange 
one or more integrity marker values 230, 240 with the instru 
mented program 220 during execution to verify its integrity 
before granting it control of the CPU 140, memory 150, I/O 
devices 160, etc. 

Program Instrumentation 

FIG. 3 is a ?ow diagram illustrating an example procedure 
300 for the malware immunization tool 60 to instrument a 
program from an original program according to one or more 
embodiments. In this example, the malware immunization 
tool 60 modi?es an original program (e.g., the original pro 
gram 210) to include at least one instruction for passing an 
integrity marker value to the operating system kernel 120 
during execution of the instruction (block 310) for run-time 
veri?cation of program execution integrity by the malware 
immunization infrastructure 130. Modifying the program 
may include modifying at least one existing instruction of the 
program or adding at least one new instruction to the program. 
The modi?ed or added instruction may be, for example, made 
part of a system call requesting access to one or more 
resources of the computer system 100, such as control of the 
CPU 140, memory 150, I/O devices 160, etc. 

The malware immunization tool 60 may further modify the 
original program to accept a given value (e.g., a random or 
pseudorandom number) from the operating system kernel 
120 to use as the integrity marker value (block 320). In some 
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4 
embodiments, these modi?cations may be performed by a 
binary rewriting of the original program at the assembly code 
level. In other embodiments, these modi?cations may be per 
formed at the source code level, and may require the program 
to be recompiled to produce an instrumented program (e.g., 
the instrumented program 220) (block 330). It will be appre 
ciated that any suitable mechanism for modifying the original 
program may be employed. 

FIG. 4 illustrates an example modi?cation of an original 
program at the assembly code level to instrument a program 
according to one or more embodiments. As shown, the origi 
nal program (e. g., the original program 210) includes original 
assembly code 420 that corresponds to original source code 
410. The original assembly code 420 includes various 
instructions that may correspond to various functions in the 
original source code 410. In the illustrated example, the origi 
nal source code 410 includes, among other elements, an 
example function (‘funcA’) nested inside a parent function 
(‘funcB’) and accepting one or more parameters. 
The example function funcA may in some embodiments 

correspond to a system call, for example, such as a ‘write’ 
function accepting a given value (e.g., ‘100’) desired to be 
written to the memory 150 at a desired location identi?ed by 
a location pointer (‘ptr’). Other example system calls may 
include ‘open’ functions, ‘read’ functions, ‘close’ functions, 
‘wait’ functions, ‘exec’ functions, ‘fork’ functions, ‘exit 
functions, functions, etc. When funcA is called, various sup 
porting instructions in the original assembly code 420 (e.g., 
‘push’ and/ or ‘add’ instructions) may be executed for pushing 
corresponding values to the top of the program’ s stack (iden 
ti?ed by the pointer ‘esp’) and otherwise executing the func 
tion. 
The original assembly code 420 is instrumented by the 

malware immunization tool 60 to produce immunized assem 
bly code 430. As shown, the immunized assembly code 430 
may include one or more additional or modi?ed instructions 

(e.g., ‘lea’, ‘push’, and/or ‘add’ instructions) for locating an 
integrity marker value (‘eax’) provided by the operating sys 
tem kernel 120 and passing it back to the operating system 
kernel 120 when funcA is called. In this way, the integrity 
marker value may be passed to the operating system kernel 
120 as if it was an additional parameter of funcA, for 
example, as shown in the corresponding immunized source 
code 440. 

It will be appreciated, however, that modi?cations to the 
actual source code are not required. In some designs, the 
original source code 410 may not be accessible to the mal 
ware immunization tool 60. Regardless, instrumentation of 
the original program 21 0 may be performed at the binary level 
without access to the original source code 410. The instru 
mented program 220 may therefore operate as if its source 
code has been modi?ed to include the integrity marker value 
as shown in the immunized source code 440, even if access to 
the original source code 410 is not available or otherwise 
feasible. 
The above-described instrumentation may accordingly be 

made effectively transparent to the user. For example, in the C 
programming language, the integrity marker value may be 
implicitly passed as the rightmost parameter of the example 
function funcA, in addition to any other existing parameters. 
Because the default C language function calling convention 
passes parameters from right to left, which inherently sup 
ports a variable number of parameters, passing the integrity 
marker value as an extra implicit rightmost parameter to C 
language function calls does not change the original seman 
tics of the function. 

a 
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However, in some embodiments, it may be desirable to 
provide an additional indicator to the operating system kernel 
120 to speci?cally identify the location of the integrity marker 
value. For example, for functions that natively accept and 
pass a variable number of parameters (e.g., the ‘printf’ func 
tion), a canary may be used as an indicator of the location of 
the integrity marker value among the original parameters. The 
canary word may be randomly chosen by the malware instru 
mentation tool 60, for example, and different programs may 
be instrumented with different canary words. 

It will of course be appreciated that the example code 
illustrated in FIG. 4 is presented in the C programming lan 
guage by way of example only, and that other programming 
languages may be used in other embodiments. 

Further, it will also be appreciated that the speci?c mecha 
nism in the example of FIG. 4 for passing the integrity marker 
value to the operating system kernel 120 as an additional 
parameter is also provided merely as an example, and that any 
mechanism for passing the integrity marker value to the oper 
ating system kernel 120 may be used. For example, the sys 
tem call number itself may be modi?ed to include the integ 
rity marker value in some embodiments. 

FIG. 5 illustrates an example modi?cation of a system call 
number according to one or more embodiments. Although 
many operating systems provide hundreds of system calls, the 
relatively large 32-bit or even 64-bit number schemes used by 
modern system architectures provide a number of unused bits 
in the system call number itself that may be used to pass the 
integrity marker value to the operating system kernel 120. For 
example, the Linux operating systems typically have just over 
300 different system calls. Thus, in a 32-bit system, for 
example, a 9-bit system call number ?eld would accommo 
date 512 unique system calls. This is more than enough to 
cover the 300 system calls, and still leaves space for a 23-bit 
integrity marker value with more than 8 million possible 
values. 

In the illustrated example of FIG. 5, a modi?ed system call 
number 500 for an example 32-bit operating system includes 
a 9-bit wide system call number ?eld 510 and a 23-bit wide 
collection of previously unused bits 520. The previously 
unused bits 520 may be used to carry a new integrity marker 
?eld 524. The previously unused bits 520 may also retain one 
or more reserved bits 522 as well, if the desired length of the 
integrity marker ?eld 524 is selected to be shorter than the 
total number of unused bits 520. 

Accordingly, the integrity marker ?eld 524 may be passed 
to the operating system kernel 120 as part of the system call 
number 500 when the call is invoked, as discussed above, and 
may be con?gured to carry the particular integrity marker 
value assigned to the invoking program. It will be appreciated 
that the number and arrangement of bits shown in FIG. 5 is for 
illustration purposes only, and may take any other form 
acceptable to the particular operating system or computer 
architecture being employed. 

It will also be appreciated that in some embodiments, pro 
grams may not invoke system calls directly. Instead, libraries 
of functions may be used, such as an implementation of the C 
library (libc), to avoid loading redundant copies of the same 
library function code into memory at run-time. For example, 
with reference back to FIG. 1, some of the applications 112 
may invoke certain functions, including system calls, through 
function calls provided by one or more of the libraries 114. 
Although convenient and common, this design may allow 
malware to access operating system services (e.g., open a 
shell) under certain circumstances without actually injecting 
any malicious code. This is sometimes referred to as a 
“retum-to-libc” attack. 
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6 
FIG. 6 illustrates the immunization of multiple instances of 

a given program that share a common library of function calls 
according to one or more embodiments. In this example, a 
?rst instance 610 (“Process A”) of the instrumented program 
220 and a second instance 620 (“Process B”) of the instru 
mented program 220 share a common library 630 of function 
calls. Among other functions, the ?rst instance 610 of the 
instrumented program 220 may execute a ?le open function 
(‘fopen’) and the second instance 620 of the instrumented 
program 220 may execute a separate open function (‘open’). 
The shared library 630 may include shared library functions 
fopen( ) and open( ) such as those for system call number ‘5’ 
in Linux. 
As shown, each instance 610, 620 of the instrumented 

program 220 may be instantiated with its own integrity 
marker value. In the illustrated example, the ?rst instance 610 
of the instrumented program 220 is instantiated with a corre 
sponding integrity marker value ‘Marker_A’ while the second 
instance 620 of the instrumented program 220 is instantiated 
with a corresponding integrity marker value ‘Marker_B’. 
Upon execution of their respective functions, each instance 
610, 620 of the instrumented program 220 may insert its 
corresponding integrity marker value into its called function. 
This allows the malware immunization infrastructure 130 to 
reliably determine if the initiating entity of the function call is 
a valid program or is instead malware, even if the function call 
is invoked via shared library functions. 

Program Veri?cation 

Once a program has been instrumented according to one or 
more of the various techniques described herein, its execution 
may be subsequently veri?ed by the malware immunization 
infrastructure 130 as being valid or trustworthy, rather than 
compromised by malware. 

FIG. 7 is a ?ow diagram illustrating an example procedure 
700 for the malware immunization infrastructure 130 to 
verify program execution integrity according to one or more 
embodiments. Process 700 begins at the point where the 
operating system kernel 120 receives a request to launch a 
program that has been instrumented to include at least one 
integrity marker, such as the instrumented program 220 dis 
cussed above (block 710). 

In some embodiments, the operating system kernel 120 
may speci?cally generate an integrity marker value for the 
program at run-time in response to the request (block 720). 
For example, the operating system kernel 120 may generate 
the integrity marker value by generating a random or pseu 
dorandom number to uniquely identify each instance (e.g., 
process or thread) of the program. Any known technique for 
generating the random or pseudorandom number may be 
used, such as a Naor-Reingold pseudorandom function, a 
Park-Miller random number generator, linear feedback shift 
registers, or others known in the art. However, in other 
embodiments, a static value may be used for integrity marker 
value. In either case, the integrity marker value may be stored 
(e.g., at a given location in the memory 150) for future refer 
ence by the malware immunization infrastructure 130. 
The operating system kernel 120 may instantiate the pro 

gram with the integrity marker value (block 730), and verify 
the execution integrity of the program using the mal ware 
immunization infrastructure 130 based on the integrity 
marker value and any information received from the program 
during execution (block 740). Based on whether the pro 
gram’s integrity is veri?ed or not, and whether subsequent 
processing is enabled, the operating system kernel 120 may 
perform various post-veri?cation activity (block 750), such 
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as “malware forensics” operations. Such malware forensics 
capabilities may allow the malware immunization infrastruc 
ture 130 to accurately locate and/ or monitor certain malicious 
activity of the malware 50. 

FIG. 8 illustrates an example procedure for instantiating 
the program with the integrity marker value according to one 
or more embodiments. In this example, instantiating the pro 
gram (block 730) may include creating a process or thread for 
the program (block 810), assigning the integrity marker value 
to the process or thread (820), and providing the integrity 
marker value to the process or thread, such as by placing it 
into the process’ run-time environment (830). It will be appre 
ciated, however, that any suitable mechanism for launching 
the program and identifying the appropriate integrity marker 
value for the program to use may be employed. In some 
embodiments, the appropriate integrity marker value for the 
program to use may be pre-programmed such that the pro 
gram and the malware immunization infrastructure 130 know 
a priori which value will be used for a given process or thread. 

FIG. 9 illustrates an example procedure for verifying the 
execution integrity of the program based on the integrity 
marker value and information received from the program 
during execution (block 740), and for performing various 
post-veri?cation activity (block 750) according to one or 
more embodiments. In this example, the operating system 
kernel 120 uses the malware immunization infrastructure 130 
to check the information received from the program for an 
integrity marker value that matches the integrity marker value 
with which the program was instantiated (block 910). Check 
ing the information may include extracting the received infor 
mation from a system call or other function executed by the 
program, for example. 

If the information received from the program includes an 
integrity marker value (‘yes’ at decision 920), the malware 
immunization infrastructure 130 may compare the received 
integrity marker value to the integrity marker value with 
which the program was instantiated (block 930). If the infor 
mation received from the program includes an integrity 
marker value that matches the integrity marker value with 
which the program was instantiated (‘yes’ at decision 940), 
the malware immunization infrastructure 130 may declare 
that the program is veri?ed (block 950). It will be appreciated 
that a “match” may not be identical to the original or gener 
ated value. For example, the original integrity marker value 
with which the program was instantiated may be further pro 
cessed in an agreed upon manner by both the operating sys 
tem kernel 120 and the instrumented program, as a further 
security measure. 

Otherwise, if the information received from the program 
does not include an integrity marker value (‘no’ at decision 
920), or it includes an integrity marker value that does not 
match the integrity marker value with which the program was 
instantiated (‘no’ at decision 940), the malware immunization 
infrastructure 130 may refrain from declaring that the pro 
gram is veri?ed and instead determine whether any post 
veri?cation activity (PVA) is warranted (decision 960). 

In some situations, it may be desirable for the malware 
immunization infrastructure 130 to perform one or more po st 
veri?cation operations, while in other situations it may be 
desirable for the malware immunization infrastructure 130 to 
disable such post-veri?cation operations, at least for a period 
of time. For example, it has been found that a newly instan 
tiated process or thread may in some situations not be able to 
immediately locate the appropriate integrity marker value 
placed into the program’s run-time environment and use it for 
?rst few system calls. Thus, in some embodiments, determin 
ing whether any post-veri?cation activity is warranted (deci 
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8 
sion 960) may include checking a ?ag maintained by the 
malware immunization infrastructure 130 (e.g., at a given 
memory location within the memory 150) to indicate whether 
post-veri?cation activity is yet appropriate. The ?ag may be 
set, for example, based on whether the information received 
from the program in the past has included, at least one integ 
rity marker value that matched the integrity marker value with 
which the program was instantiated (i.e., at least one ‘yes’ at 
decision 940). The reception of at least one matching integrity 
marker value may act as a trigger to enable the ?ag, thereby 
providing a grace period for the program to locate the appro 
priate integrity marker value and prevent the malware immu 
nization infrastructure 130 from declaring the program to be 
compromised by malware until it is clear that the program has 
located the appropriate integrity marker value, such that false 
positives may be reduced or eliminated. 

If post-veri?cation activity is not enabled (‘no’ at decision 
960), no further action is taken and the malware immuniza 
tion infrastructure 130 returns to checking sub sequent system 
call information. (block 91 0). If post-veri?cation activity is in 
fact enabled (‘yes’ at decision 960), and the current informa 
tion received from the program does not include an integrity 
marker value (‘no’ at decision 920) or includes an integrity 
marker value that does not match the integrity marker value 
with which the program was instantiated (‘no’ at decision 
940), the malware immunization infrastructure 130 may 
declare the program to be compromised by malware (block 
1010). 
The malware immunization infrastructure 130 may decide 

whether to continue the compromised program and monitor it 
for any malicious activity (decision 1020). This may be 
referred to as “malware forensics,” and may be useful in 
determining how the identi?ed malware operates. If the mal 
ware immunization infrastructure 130 does not desire to 
monitor the compromised program for subsequent malicious 
activity (‘no’ at decision 1020), the operating system kernel 
120 may simply stop the compromised program (block 1030). 
Otherwise, if the malware immunization infrastructure 130 
does desire to monitor the compromised program for subse 
quent malicious activity (‘yes’ at decision 1020), the operat 
ing system kernel 120 may allow the compromised program 
to continue as long as desired (block 1040). In some embodi 
ments, a user level utility may be employed to allow a user of 
the computer system 100 to inform the malware immuniza 
tion infrastructure 130 about which processes or threads it 
should check for the integrity marker value, and what steps 
should be taken once a compromised program is detected. 
Many of the elements described in the disclosed embodi 

ments may be implemented as modules. A module is de?ned 
here as an isolatable element that performs a de?ned function 
and has a de?ned interface to other elements. The modules 
described in this disclosure may be implemented in hardware, 
a combination of hardware and software, ?rmware, wetware 
(i.e., hardware with a biological element) or a combination 
thereof, all of which are behaviorally equivalent. For 
example, modules may be implemented using computer hard 
ware in combination with software routine(s) written in a 
computer language (such as C, C++, Fortran, Java, Basic, 
Matlab or the like) or a modeling/ simulation program such as 
Simulink, State?ow, GNU Octave, or LabVIEW MathScript. 
The software routine(s) may be initially stored in a computer 
readable medium, and loaded and executed by a processor. 
Additionally, it may be possible to implement modules using 
physical hardware that incorporates discrete or program 
mable analog, digital and/or quantum hardware. Examples of 
programmable hardware include: computers, microcontrol 
lers, microprocessors, application-speci?c integrated circuits 
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(ASICs); ?eld programmable gate arrays (FPGAs); and com 
plex programmable logic devices (CPLDs). Computers, 
microcontrollers and microprocessors are programmed using 
languages such as assembly, C, C++ or the like. FPGAs, 
ASICs and CPLDs are often programmed using hardware 
description languages (HDL) such as VHSIC hardware 
description language (V HDL) or Verilog that con?gure con 
nections between internal hardware modules with lesser 
functionality on a programmable device. Finally, it needs to 
be emphasized that the above mentioned technologies may be 
used in combination to achieve the result of a functional 
module. 

While various embodiments have been described above, it 
should be understood that they have been presented by way of 
example, and not limitation. It will be apparent to persons 
skilled in the relevant art(s) that various changes in form and 
detail can be made therein without departing from the spirit 
and scope. In fact, after reading the above description, it will 
be apparent to one skilled in the relevant art(s) how to imple 
ment alternative embodiments. Thus, the present embodi 
ments should not be limited by any of the above described 
exemplary embodiments. In particular, it should be noted 
that, for example purposes, the above explanation has focused 
on the example of an operating system oriented computing 
system. However, one skilled in the art will recognize that 
embodiments of the invention could be any computing sys 
tem subject to attacks by malware. 

In addition, it should be understood that any ?gures that 
highlight any functionality and/or advantages, are presented 
for example purposes only. The disclosed architecture is suf 
?ciently ?exible and con?gurable, such that it may be utilized 
in ways other than that shown. For example, the steps listed in 
any ?owchart may be re-ordered or only optionally used in 
some embodiments. 

Further, the purpose of the Abstract of the Disclosure is to 
enable the Us. Patent and Trademark O?ice and the public 
generally, and especially the scientists, engineers and practi 
tioners in the art who are not familiar with patent or legal 
terms or phraseology, to determine quickly from a cursory 
inspection the nature and essence of the technical disclosure 
of the application. The Abstract of the Disclosure is not 
intended to be limiting as to the scope in any way. 

Finally, it is the applicant’s intent that only claims that 
include the express language “means for” or “step for” be 
interpreted under 35 U.S.C. 112, paragraph 6. Claims that do 
not expressly include the phrase “means for” or “step for” are 
not to be interpreted under 35 U.S.C. 1 12, paragraph 6. 
What is claimed is: 
1. A method of verifying program execution integrity 

employing a computer system including at least one proces 
sor con?gured to execute an operating system kernel, the 
method comprising: 

the computer system receiving a request to launch a pro 
gram that has been instrumented to include at least one 
integrity marker that is independent of other portions of 
the program; 

the computer system using the kernel, and not a compiler 
outside of the kernel, to instantiate the program with a 
unique and dynamically generated integrity marker 
value; and 

the computer system verifying the execution integrity of 
the program based on the unique and dynamically gen 
erated integrity marker value and information received 
from the program during execution. 

2. The method of claim 1, further comprising the computer 
system generating the integrity marker value for the program 
at run-time in response to the request. 
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3. The method of claim 2, wherein the generating of the 

integrity marker value comprises generating a random or 
pseudorandom number to uniquely identify an instance of the 
program execution. 

4. The method of claim 1, wherein the instantiating of the 
program comprises: 

the computer system creating a process or thread for the 
Program; 

the computer system assigning the unique and dynamically 
generated integrity marker value to the process or 
thread; and 

the computer system providing the integrity marker value 
to the process or thread in a run-time environment. 

5. The method of claim 1, further comprising the computer 
system extracting the received information from a system call 
executed by the program. 

6. The method of claim 1, wherein the verifying comprises 
checking the information received from the program execu 
tion for an integrity marker value that matches the integrity 
marker value with which the program was instantiated. 

7. The method of claim 1, further comprising the computer 
system monitoring subsequent malicious activity of the pro 
gram when the verifying fails. 

8. The method of claim 1, wherein the program is declared 
to be compromised by malware only after at least one integ 
rity marker value is received from the program that does not 
match the unique and dynamically generated integrity marker 
value with which the program was instantiated. 

9. The method of claim 1, wherein the verifying comprises 
checking the information received from the program execu 
tion for an integrity marker value that matches a further pro 
cessed value of the integrity marker value with which the 
program was instantiated. 

10. The method of claim 1, wherein using the kernel to 
instantiate the program with an integrity marker value com 
prises assigning a new integrity marker value each time the 
program is instantiated. 

11. The method of claim 1, wherein the program comprises 
a system call. 

12. An apparatus for verifying program execution integrity, 
the apparatus comprising: 

at least one processor con?gured to: 
execute an operating system kernel, 
receive a request to launch a program that has been 

instrumented to include at least one integrity marker 
that is independent of other portions of the program, 

use the kernel, and not a compiler outside of the kernel, 
to instantiate the program with a unique and dynami 
cally generated integrity marker value, and 

verify the execution integrity of the program based on 
the integrity marker value and information received 
from the program during execution; and 

at least one non-transitory storage medium coupled to 
the at least one processor and con?gured to store the 
program. 

13. The apparatus of claim 12, wherein the instantiating of 
the program comprises: 

creating a process or thread for the program; 
assigning the unique and dynamically generated integrity 

marker value to the process or thread; and 
providing the integrity marker value to the process or 

thread via a run-time environment. 
14. The apparatus of claim 12, wherein the verifying com 

prises checking the information received from the program 
execution for an integrity marker value that matches a further 
processed value of the integrity marker value with which the 
program was instantiated. 
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15. The apparatus of claim 12, wherein the processor is 
con?gured to use the kernel to instantiate the program With an 
integrity marker value by assigning a neW integrity marker 
value each time the program is instantiated. 

16. The apparatus of claim 12, Wherein the program com- 5 
prises a system call. 
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