US008806640B2

a2z United States Patent (10) Patent No.: US 8,806,640 B2
Wang (45) Date of Patent: Aug. 12,2014
(54) PROGRAM EXECUTION INTEGRITY OTHER PUBLICATIONS

VERIFICATION FOR A COMPUTER SYSTEM

(75) Inventor: Xinyuan Wang, Clifton, VA (US)

(73) Assignee: George Mason Intellectual Properties,
Inc., Fairfax, VA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 10 days.

(21) Appl. No.: 13/278,814

(22) Filed: Oct. 21, 2011
(65) Prior Publication Data
US 2012/0159630 A1l Jun. 21, 2012

Related U.S. Application Data
(60) Provisional application No. 61/405,663, filed on Oct.

22, 2010.
(51) Imt.ClL
GO6F 11/00 (2006.01)
(52) US.CL
USPC ..coocevnee 726/24; 726/26; 726/22; 713/176
(58) Field of Classification Search
CPC GOG6F 21/51; GOG6F 21/50; GO6F 21/52
USPC oo 726/24, 26, 22;713/176

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2003/0135744 Al* 7/2003 Almeidacccoooeee. 713/191
2008/0060077 Al* 3/2008 Cowan et al. . 726/25
2009/0007100 Al1* 1/2009 Fieldetal.cccooviinnn. 718/1

Immunization | instrumented Program’ User-Space Programs
Tool 220 14¢
8¢

Chen et al.(2003). Oblivious hashing: A stealthy software integrity
verification primitive. Lecture Notes in Computer Science vol. 2578,
pp. 400-414.*

Jiang et al. (Sep. 2010). Artificial Malware Immunization based on
Dynamically Assigned Sense of Self, Sep. 2010. TechRepublic.
com.*

Hinton et. al (1999). SAM: Security Adaptation Manager, Annual
Computer Security Applications Conference (ACSAC), Phoenix,
AZ, Dec. 1999 .*

Love (2005). Linux Kernel Development Second Edition. Retrieved
Mar. 22, 2014 from http://www.makelinux.net/books/lkd2/
2u=app02. Relevant Sections: Chapter 5-System Calls and Appendix
B—Kernel Random Number Generator.*

Yuqun Chen etal., “Oblivious Hashing: A Stealthy Software Integrity
Verification Primitive”, Lecture Notes in Computer Science, vol.
2578, pp. 400-414 (2003).

Zinyuan Wang et al., “Artificial Malware Immunization Based on
Dynamically Assigned Sense of Self”, TechRepublic.com, Sep. 2010
(16 pages).

Martin Abadi et al., “Control-Flow Integrity: Principles, Implemen-
tations, and Applications”, In Proceedings of the 12th ACM Confer-
ence on Computer and Communications Security (CCS 2005), pp.
340-353, Nov. 2005.

(Continued)

Primary Examiner — Brian Shaw
(74) Attorney, Agent, or Firm — DLA Piper LLP (US)

(57) ABSTRACT

A computer system may be employed to verify program
execution integrity by receiving a request to launch a program
that has been instrumented to include at least one integrity
marker, instantiating the program with an integrity marker
value, and verifying the execution integrity of the program
based on the integrity marker value and information received
from the program during execution. A computer system may
also be employed for program instrumentation by modifying
the program to include at least one instruction for passing an
integrity marker value to an operating system kernel during
execution of the instruction.

16 Claims, 9 Drawing Sheets

Operating System Kernel
120

Malware mmunization
infrastructure
130

US 8,806,640 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Elias Bachaalany, “Detect if Your Program is Running Inside a Vir-
tual Machine”, http://www.codeproject.com/system/vmdetect.asp,
Apr. 4, 2005 (6 pages).

“ghttped Daemon Buffer Overflow Vulnerability”, http://
securityfocus.com/bid/2879, Published Jun. 17, 2001, updated Jul.
11, 2009 (5 pages).

“Snort/Sourcefire DCE/RPC Packet Reassembly Stack Buffer Over-
flow Vulnerability”, http://www.securityfocus.com/bid/226 16, Pub-
lished Feb. 19, 2007, updated Nov. 15, 2007 (5 pages).

Alexey Smirnov et al., “Automatic Detection, Identification, and
Repair of Control-Hijacking Attacks”, In Proceedings of the 12th
Network and Distributed System Security Symposium (NDSS 2005),
Feb. 2005 (19 pages).

Elena Barrantes et al., “Randomized Instruction Set Emulation”,
ACM Transactions on Information and System Security, vol. 8, No. 1,
pp. 3-40, Feb. 2005.

Elena Barrantes et al., “Randomized Instruction Set Emulation to
Disrupt Binary Code Injection Attacks”, In Proceedings of the 10th
ACM Conference on Computer and Communications Security
(CCS’03), pp. 281-289, Oct. 2003.

Sandeep Bhatkar et al., “Dataflow Anomaly Detection”, In Proceed-
ings of the 2006 IEEE Symposium on Securiytand Privacy (S&P
2006), May 2006 (15 pages).

Miguel Castro et al., “Secuirty Software by Enforcing Data-Flow
Integrity”, OSDI’06: 7th USENIX Symposium on Operating Sys-
tems Design and Implementhtion, pp. 147-160. Nov. 2006.

Shuo Chen et al., “Defeating Memory Corruption Attacks via Pointer
Taintedness Detection”, In Proceedings on the 2005 International
Conference on Dependable Systems and Networks (DSN 2005), Jun.
2005 (10 pages).

Shuo Chen et al, “Non-Control-Data Attacks are Realistic Threats”,
14th USENIX Security Symposium, pp. 177-191, Aug. 2005.

Xu Chen et al., “Towards an Understanding of Anti-Virtualization
and Anti-Debugging Behavior in Modern Malware”, In Proceedings
of the 2008 International Conference on Dependable Systems and
Networks (DSN 2008). IEEE, Jun. 2008 (10 pages).

David M. Chess et al. “An Undetectable Computer Virus”, In 2000
Virus Bulletin Conference, Sep. 2000 (8 pages).

Fred Cohen, “Computer Viruses: Theory and Experiments”, Com-
puters and Security, vol. 6, No. 1; pp. 22-35, Feb. 1987.

Crispan Cowan et al., “StackGuard: Automatic Adaptive Detection
and Prevention of Buffer-Overflow Attacks”, In Proceedings of the
7th USENIX Security Symposium, pp. 63-78, Jan. 26-29, 1998.
Henry H. Feng et al., “Anomaly Detection Using Call Stack Infor-
mation”, In Proceedings of the 2003 IEEE Symposium on Security
and Privacy (S&P 2003). IEEE, May 2003 (14 pages).

Stephanie Forrest et al.; “Computer Immunology”, Communications
of the ACM, vol. 40, No. 10, pp. 88-96, Oct. 1997.

Stephanie Forrest et al., “A Sense of Self for Unix Processes”, In
Proceedings of the 1996 IEEE Symposium on Security and Privacy
(S&P 1996), pp. 120-128; May 1996.

Mike Frantzen et al., “StackGhost: Hardware Facilitated Stack Pro-
tection”, In Proceedings of the 10th USENIX Security Symposium,
pp. 55-66, Aug. 2001.

Jonathon T. Giffin et al., “Environment-Sensitive Intrusion Detec-
tion”, In Proceedings of the 8th International Symposium on Recent
Advances in Intrusion Detection (RAID 2005), Sep. 2005 (22 pages).
Rajeev Gopalakrishna et al., “Efficient Intrusion Detection Using
Automaton Inlining”, In Proceedings of the 2005 IEEE Symposium
on Security and Privacy (S&P 2005), pp. 18-31, May 2005.

Mohan Rajagopalan et al., “System Call Monitoring Using Authen-
ticated System Calls”, IEEE Transactions on Dependable and Secure
Computing, vol. 3, No. 3, pp. 216-229, Jul. 2006.

Jun Xu et al., “Transparent Runtime Randomization for Security”, In
Proceedings of the 22nd Symposium on Reliable and Distributed
Systems (SRDS 2003), pp. 260-269. Oct. 2003.

Gaurav S. Kc et al.,, “Countering Code-Injection Attacks with
Instruction-Set Randomization”, In Proceedings of the 10th ACM
Conference on Computer and Communications Security (CCS
2003), pp. 272-280, Oct. 2003.

Vladimir Kiriansky et al., “Secure Execution via Program Shepherd-
ing”, In Proceedings of the 11th USENIX Security Symposium, pp.
191-206, Aug. 2002.

C. M. Linn et al., “Protecting against Unexpected System Calls”, In
Proceedings of the 14th USENIX Security Symposium, pp. 239-254,
Aug. 2005.

Danny Nebenzahl et al., “Install-Time Vaccination of Windows
Executables to Defend against Stack Smashing Attacks”, IEEE
Transactions on Dependable and Secure Computing (TDSC), vol. 3m
No. 1, pp. 78-90, Jan.-Mar. 2006.

James Newsome et al., “Dynamic Taint Analysis for Automatic
Detection, Analysis, and Signature Generation of Exploits on Com-
modity Software”, In Proceedings of the 12th Network and Distrib-
uted System Security Symposium (NDSS 2005), Feb. 2005 (17
pages).

Roberto Perdisci et al.,, “Misleading Worm Signature Generators
Using Deliberate Noise Injection”, In Proceedings of the 2006 IEEE
Symposium on Security and Privacy (S&P 2006), May 2006 (17
pages).

Nick L. Petroni et al., “Automated Detection of Persistent Kernel
Control-Flow Attacks”, In Proceedings of the 17th ACM Conference
on Computer and Communications Security (CCS 2007), pp. 103-
115, Oct. 2007.

Mohan Rajagopalan et al., “Authenticated System Calls”, In Pro-
ceedings of the 2005 International Conference on Dependable Sys-
tems and Networks (DSN’05), Jun. 2005 (10 pages).

Sandeep Bhatkar et al., “Efficient Techniques for Comprehensive
Protection from Memory Error Exploits”, In Proceedings of the 14th
USENIX Security Symposium, pp. 255-270, Aug. 2005.

Prateck Saxena et al., “Efficient Fine-Grained Binary Instrumenta-
tion with Applications to Taint-Tracking”, In Proceedings of the 2008
International Symposium on Code Generation and Optimization
(CGO’08), Apr. 5, 2008 (10 pages).

R. Sekar et al., “A Fast Automation-Based Method for Detecting
Anomalous Program Behaviors”, In Proceedings of the 2001 IEEE
Symposium on Security and Privacy (S&P 2001), pp. 144-155, May
2001.

R. Sekar et al., “Model-Carrying Code: A Practical Approach for Safe
Execution of Untrusted Applications”, In Proceedings of the 19th
ACM Symposium on Operating Systems Principles (SOSP’03), pp.
15-28, Oct. 2003.

Hovav Shacham, et al., “The Geometry of Innocent Flesh on the
Bone: Return-into-libc without Function Calls (on the x86)”, In
Proceedings of the 14th ACM Conference on Computer and Com-
munications Security (CCS’07), pp. 552-561, Oct. 2007.

Florian Nentwich et al., “Cross Site Scripting Prevention with
Dynamic Data Tainting and Static Analysis”, In Proceedings of the
14th Network and Distributed System Security Symposium
(NDSS’07), Feb. 2007 (14 pages).

David Wagner et al., “Intrusion Detection via Static Analysis”, In
Proceedings of the 2001 IEEE Symposium on Security and Privacy
(S&P 2001), May 2001 (13 pages).

David Wagner et al., “Mimicry Attacks on Host-Based Intrusion
Detection Systems”, In Proceedings of the 9th ACM Conference on
Computer and Communications Security (CCS’02), Oct. 2002 (10
pages).

XiaoFeng Wang et al., “Packet Vaccine: Black-box Exploit Detection
and Signature Generation”, In Proceedings of the 13th ACM Confer-
ence on Computer and Communications Security (CCS’06), pp.
37-46, Oct. 2006.

Christina Warrender et al., “Detecting Intrusions Using System Calls:
Alternative Data Models”, In Proceedings of the 1999 IEEE Sympo-
sium on Security and Privacy (S&P 1999), pp. 133-145, May 1999.
John Wilander et al., “A Comparison of Publicly Available Tools for
Dynamic Buffer Overflow Prevention”, In Proceedings of the 10th
Network and Distributed System Security Symposium (NDSS 2003),
Feb. 2003 (16 pages).

US 8,806,640 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Wei Xu et al., “Taint-Enhanced Policy Enforcement: A Practical
Approach to Defeat a Wide Range of Attacks”, In Proceedings of the
15th USENIX Security Symposium, Aug. 2006 (20 pages).

F.M. Burnet, “Self and Not-Self”, Cambridge University Press, Cam-
bridge, 1969 (7 pages).

J. Klein, “Immunology: The Science of Self-Nonself Discrimina-
tion”, John Wiley & Sons, New York, 1982 (19 pages).

* cited by examiner

U.S. Patent Aug. 12,2014 Sheet 1 of 9 US 8,806,640 B2

Malware US@Y~S$a§:§ra§mm3 |

Immunization o~ 2 ~114
£ &

Tool ;
§8 {i&pmécaﬁaﬁs) Efiibs’aﬁes §

| i i
i H
i

! Operating System Kernel
120 %

mmammmmnmmmp

Malware Iimmunization Infrastructure ,

T |
T 1 1
- |

: CPU Memory HQ Devices
; 140 188 180
i
{

U.S. Patent Aug. 12,2014 Sheet 2 of 9 US 8,806,640 B2

§

FOGTam b

Malware
immunization | Instrumented Program\,
Tool 2280

&8

User-Space Programs

118

integrity

Marker e

Value
240 /

Operating System Kernel
120

Mabware Immunization
infrastructure
138

T
2
P2

U.S. Patent Aug. 12,2014 Sheet 3 of 9 US 8,806,640 B2

3
&3
S
o

Modify program to include at least one instruction
for passing integrity marker value to the operating
system kernel

% fﬁzﬁ

Further modify program to accept a random or
pseudorandom number from the operating sysiem
kernel to use as the integrity marker value upon
execution of the instruction

§ ¢f33@
&sam nn §
§ Recompile modified program {o producs z
: instrumented program s
§

U.S. Patent Aug. 12,2014 Sheet 4 of 9 US 8,806,640 B2

220 230

Original Program immunized Program

D
@
€0
@

void

funcA{int a, char *pir)
H

L

i3
void
funcB{

<
N
H
:
H
<
h
<
N
3
»
H
H
H
<
<
<
<
H
i
H
3

funcA{TO0, ptr, Marker) G

mmunized Assembly

: funcB {
! pushl %ebp : :
i movi %esp, %ebp : { ileal 8{%sebp}, %eax ||
P subl $8, %esp i Pl
! movi 30, -4{%ebp) : i | pushl {%eax} ;
i subl $8 %esp ! pushl -4{%ebp)
i | pushl -4{%ebp) : pushi $100 :
: pu;shi %“’i%@ : call ftff:‘c;if
§ Pcall funcA i addl 316, %esp

L | addl $18, %esp § | ddl 34, Yesp |
i leave [leave
rat ret

U.S. Patent Aug. 12,2014 Sheet 5 of 9 US 8,806,640 B2

§ Unused Bits i System Cali Bits |
g 528 i 510 §
i | Resy Integrity Marker System Call No.
Py 822 524 5§12
23 bits S bits :

...

U.S. Patent

220

Aug. 12,2014

immunized Program

...

=510

Sheet 6 of 9

Fud

220

US 8,806,640 B2

immunized Program

...

i Process B

=620

K ¢
i open{. Marker_B} :
i}
~530

Shared Library

> foper(...M_A} open{. M _B)<€
!

o

mov $0x5, %eax
int $0x8¢

...........

U.S. Patent Aug. 12,2014 Sheet 7 of 9 US 8,806,640 B2

~710
Receive request to launch a program that has
besn instrumente di:@ include at least one integrity
marker

§, f»?z@
goenssscsetaenaenenateacas ‘“’”“‘“““"“‘““‘"“”““”‘””““""’“"“"Z
3@%@@'&%@ integrity marker value for the program at;
§ run-time in response to the request :

s"“““““"“"’"“"“‘“’““’”“’““’““’"“”"'"“”“}?3@

instantiate the program with integrity marker value
@ 140

Verify execution integrity of the program based on

o

integrity marker value and information received
from the program during exscution

¥ fod
emonwsuana»nanmmaannnnwnson POV CTOACTCDTTOOCOD DD TS 55
s s
g8 §
N et e . s
s Post-verification activity :
? N
s s
aﬂ@a ﬂﬂﬂﬂﬂﬂﬂﬂ a0 XN E K IO DO A0 00D A A E Ao OO RS DA s

U.S. Patent Aug. 12,2014 Sheet 8 of 9 US 8,806,640 B2

Instantiate Program

Create process or thread for program

é, fwggﬁ

Assign integrity marker value {o process or
thread

% ~830

Provide integrity marker {o process or thread via
its run-time environment

FIG. 8

U.S. Patent Aug. 12,2014 Sheet 9 of 9 US 8,806,640 B2

140
Verify Program Execution integrity a
gﬂ”v"g%
Check system call information received from <
program for integrity marker value

o~ Integrity marker™
S ralue received? 7

930

Compare received integrity marker value
{o integrity marker value with which the
program was instantiated

950

Program
verified

~ 750
Post-Verification Activity (PVA) v ~010
20) . s
~1030 1020 lar
Sto ~ Monitor m’@ﬁffsi? ;:i be
@rc: “im N malicious) icmg ﬁein‘sad
ran . [IFomy

by malwars

fs«‘@ 848

Aliow Compromised
Program to Continue

Vo

FIG. 8

US 8,806,640 B2

1
PROGRAM EXECUTION INTEGRITY
VERIFICATION FOR A COMPUTER SYSTEM

This invention was made with government support under
grant number CNS-0845042 funded by the National Science
Foundation. The government has certain rights in this inven-
tion.

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 61/405,663, filed on Oct. 22, 2010, entitled
“Malware Immunization” which is hereby incorporated by
reference in its entirety.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a system diagram illustrating an example com-
puter system according to one or more embodiments of the
present invention.

FIG. 2 is a flow diagram providing a basic overview of an
example program execution integrity verification procedure
using a malware immunization tool and a malware immuni-
zation infrastructure according to one or more embodiments.

FIG. 3 is a flow diagram illustrating an example procedure
for a malware immunization tool to instrument a program
from an original program according to one or more embodi-
ments.

FIG. 4 illustrates an example modification of an original
program at the assembly code level to instrument a program
according to one or more embodiments.

FIG. 5 illustrates an example modification of a system call
number according to one or more embodiments.

FIG. 6 illustrates the immunization of multiple instances of
a given program that share a common library of function calls
according to one or more embodiments.

FIG. 7 is a flow diagram illustrating an example procedure
for a malware immunization infrastructure to verify program
execution integrity according to one or more embodiments.

FIG. 8 illustrates an example procedure for instantiating
the program with the integrity marker value according to one
or more embodiments.

FIG. 9 illustrates an example procedure for verifying the
execution integrity of the program based on the integrity
marker value and information received from the program
during execution, and for performing various post-verifica-
tion activity according to one or more embodiments.

DETAILED DESCRIPTION OF EMBODIMENTS

Various embodiments of the present invention are directed
to the verification of program execution integrity to protect
against malware. Example embodiments are described below
with reference to the drawings, wherein like reference numer-
als are used to refer to like elements throughout. The term
“embodiments of the invention” does not require that all
embodiments of the invention include the discussed feature or
mode of operation. Alternate embodiments may be devised
without departing from the scope of the invention, and well-
known elements of the invention may not be described in
detail or may be omitted so as not to obscure the relevant
details.

In addition, the terminology used herein is for the purpose
of describing particular embodiments only and is not
intended to be limiting of the invention. For example, as used

20

25

30

35

40

45

50

55

60

65

2

[T IR

herein, the singular forms “a,” “an,” and “the” are intended to
include the plural forms as well, unless the context clearly
indicates otherwise. It will be further understood that the
terms “comprises,” “comprising,” “includes,” and/or “includ-
ing,” when used herein, specify the presence of stated fea-
tures, integers, steps, operations, elements, and/or compo-
nents, but do not preclude the presence or addition of one or
more other features, integers, steps, operations, elements,
components, and/or groups thereof.

System Overview

FIG. 1 is a system diagram illustrating an example com-
puter system according to one or more embodiments of the
present invention. As shown, the computer system 100 may
include user-space programs 110, an operating system kernel
120, and various hardware components, such as a central
processing unit 140, memory 150, and input/output (I/O)
devices 160. It will be appreciated that the CPU 140 is shown
as a single unit for illustration purposes only, and may include
one or multiple CPUs. Further, each CPU may be a single-
core processor or a multi-core processor that combines two or
more independent processing cores. Example I/O devices 160
may include hard disks, keyboards, computer mice, printers,
displays, etc.

The operating system kernel 120 generally refers to the
component of many computer operating systems that acts as
a bridge between software programs and the physical data
processing performed at the hardware level. Responsibilities
of'the operating system kernel 120 may include managing the
computer system’s 100 resources as well as the communica-
tion between hardware and software. For example, the oper-
ating system kernel 120 may manage the user-space pro-
grams’ 110 access to the CPU 140, memory 150, and 1/O
devices 160 through various functions and/or system calls.

The memory 150 may be used to store both program
instructions and data, and may be divided by the operating
system kernel 120 into both “kernel space” and “user space.”
Kernel space includes memory that may be used for running
the operating system kernel 120, kernel extensions, and/or
some device drivers, but is not usually made accessible to the
user-space programs 110. User space includes memory that
may be set up by the operating system kernel 120 for operat-
ing a user’s context of execution, processes, threads, etc.

The user-space programs 110 may include various types of
programs, such as applications 112 and libraries 114. The
libraries 114 may include a variety of function calls, for
example, which may invoke one or more system calls and
may be shared among the applications 112. This sharing may
allow multiple processes or threads from the applications 112
to use a common, single copy of a given library function
during execution to avoid unnecessary duplication of code
stored in the memory 150 at run-time.

As is further illustrated in FIG. 1, the computer system 100
may be exposed to one or more types of malware 50, such as
viruses, worms, botnets, rootkits, trojans, spyware, keylog-
gers, etc., that may attempt to access the computer system 100
through the user-space programs 110. To protect against mali-
cious actions of the malware 50, the user-space programs 110
may be specially instrumented, according to various tech-
niques disclosed herein, by a malware immunization tool 60
such that a malware immunization infrastructure 130 oper-
ated by the operating system kernel 120 may verify the execu-
tion integrity of's given user-space program 110 before grant-
ing it control of the CPU 140, memory 150, /O devices 160,
etc.

US 8,806,640 B2

3

For illustration purposes, the malware immunization infra-
structure 130 is shown as a component of the operating sys-
tem kernel 120. However, it will be appreciated that the mal-
ware immunization infrastructure 130 may be implemented
in other embodiments as an entirely separate entity from the
operating system kernel 120. In still other embodiments, the
operating system kernel 120 may entirely subsume the opera-
tions of the malware immunization infrastructure 130. For
example, the operating system kernel 120 may be specially
instrumented to perform the operations otherwise attributed
herein to the malware immunization infrastructure 130.

Similarly, the malware immunization tool 60 is shown for
illustration purposes as being separate from the computer
system 100. However, in general, the malware immunization
tool 60 may be separate from or integral to the computer
system 100, and may be operated independently or at the
direction of the operating system kernel 120, as shown by the
dashed line in FIG. 1. In some embodiments, the malware
immunization tool 60 may be located remotely from the com-
puter system 100 and be implemented as, or operated by, a
separate computer system (not shown). In some embodi-
ments, the malware immunization tool 60 may be imple-
mented as, or otherwise include, a user level utility, such as a
compiler.

FIG. 2 is a flow diagram providing a basic overview of an
example program execution integrity verification procedure
using the malware immunization tool 60 and the malware
immunization infrastructure 130 according to one or more
embodiments. In the illustrated example, the malware immu-
nization tool 60 produces an instrumented program 220 from
an original program 210 that is modified, as described herein,
to protect it against various control flow hijacking attacks that
may be mounted by the malware 50, such as buffer overflow
attacks, return-to-libc attacks, return-oriented exploits, etc.,
in an attempt to gain access to the CPU 140, memory 150, [/O
devices 160, etc. The instrumented program 220 may then be
stored among the user-space programs 110 for operation on
the computer system 100.

As will be described below in more detail, the malware
immunization infrastructure 130 may subsequently exchange
one or more integrity marker values 230, 240 with the instru-
mented program 220 during execution to verify its integrity
before granting it control of the CPU 140, memory 150, I/O
devices 160, etc.

Program Instrumentation

FIG. 3 is a flow diagram illustrating an example procedure
300 for the malware immunization tool 60 to instrument a
program from an original program according to one or more
embodiments. In this example, the malware immunization
tool 60 modifies an original program (e.g., the original pro-
gram 210) to include at least one instruction for passing an
integrity marker value to the operating system kernel 120
during execution of the instruction (block 310) for run-time
verification of program execution integrity by the malware
immunization infrastructure 130. Modifying the program
may include modifying at least one existing instruction of the
program or adding at least one new instruction to the program.
The modified or added instruction may be, for example, made
part of a system call requesting access to one or more
resources of the computer system 100, such as control of the
CPU 140, memory 150, I/O devices 160, etc.

The malware immunization tool 60 may further modify the
original program to accept a given value (e.g., a random or
pseudorandom number) from the operating system kernel
120 to use as the integrity marker value (block 320). In some

10

20

25

30

35

40

45

50

55

60

4

embodiments, these modifications may be performed by a
binary rewriting of the original program at the assembly code
level. In other embodiments, these modifications may be per-
formed at the source code level, and may require the program
to be recompiled to produce an instrumented program (e.g.,
the instrumented program 220) (block 330). It will be appre-
ciated that any suitable mechanism for modifying the original
program may be employed.

FIG. 4 illustrates an example modification of an original
program at the assembly code level to instrument a program
according to one or more embodiments. As shown, the origi-
nal program (e.g., the original program 210) includes original
assembly code 420 that corresponds to original source code
410. The original assembly code 420 includes various
instructions that may correspond to various functions in the
original source code 410. In the illustrated example, the origi-
nal source code 410 includes, among other elements, an
example function (‘funcA’) nested inside a parent function
(‘funcB’) and accepting one or more parameters.

The example function funcA may in some embodiments
correspond to a system call, for example, such as a “write’
function accepting a given value (e.g., ‘100°) desired to be
written to the memory 150 at a desired location identified by
a location pointer (‘ptr’). Other example system calls may
include ‘open’ functions, ‘read’ functions, ‘close’ functions,
‘wait” functions, ‘exec’ functions, ‘fork’ functions, ‘exit’
functions, functions, etc. When funcA is called, various sup-
porting instructions in the original assembly code 420 (e.g.,
‘push’and/or ‘add’ instructions) may be executed for pushing
corresponding values to the top of the program’s stack (iden-
tified by the pointer ‘esp’) and otherwise executing the func-
tion.

The original assembly code 420 is instrumented by the
malware immunization tool 60 to produce immunized assem-
bly code 430. As shown, the immunized assembly code 430
may include one or more additional or modified instructions
(e.g., ‘lea’, ‘push’, and/or ‘add’ instructions) for locating an
integrity marker value (‘eax’) provided by the operating sys-
tem kernel 120 and passing it back to the operating system
kernel 120 when funcA is called. In this way, the integrity
marker value may be passed to the operating system kernel
120 as if it was an additional parameter of funcA, for
example, as shown in the corresponding immunized source
code 440.

It will be appreciated, however, that modifications to the
actual source code are not required. In some designs, the
original source code 410 may not be accessible to the mal-
ware immunization tool 60. Regardless, instrumentation of
the original program 210 may be performed at the binary level
without access to the original source code 410. The instru-
mented program 220 may therefore operate as if its source
code has been modified to include the integrity marker value
as shown in the immunized source code 440, even if access to
the original source code 410 is not available or otherwise
feasible.

The above-described instrumentation may accordingly be
made effectively transparent to the user. For example, inthe C
programming language, the integrity marker value may be
implicitly passed as the rightmost parameter of the example
function funcA, in addition to any other existing parameters.
Because the default C language function calling convention
passes parameters from right to left, which inherently sup-
ports a variable number of parameters, passing the integrity
marker value as an extra implicit rightmost parameter to C
language function calls does not change the original seman-
tics of the function.

US 8,806,640 B2

5

However, in some embodiments, it may be desirable to
provide an additional indicator to the operating system kernel
120 to specifically identify the location of the integrity marker
value. For example, for functions that natively accept and
pass a variable number of parameters (e.g., the ‘printf” func-
tion), a canary may be used as an indicator of the location of
the integrity marker value among the original parameters. The
canary word may be randomly chosen by the malware instru-
mentation tool 60, for example, and different programs may
be instrumented with different canary words.

It will of course be appreciated that the example code
illustrated in FIG. 4 is presented in the C programming lan-
guage by way of example only, and that other programming
languages may be used in other embodiments.

Further, it will also be appreciated that the specific mecha-
nism in the example of FIG. 4 for passing the integrity marker
value to the operating system kernel 120 as an additional
parameter is also provided merely as an example, and that any
mechanism for passing the integrity marker value to the oper-
ating system kernel 120 may be used. For example, the sys-
tem call number itself may be modified to include the integ-
rity marker value in some embodiments.

FIG. 5 illustrates an example modification of a system call
number according to one or more embodiments. Although
many operating systems provide hundreds of system calls, the
relatively large 32-bit or even 64-bit number schemes used by
modern system architectures provide a number of unused bits
in the system call number itself that may be used to pass the
integrity marker value to the operating system kernel 120. For
example, the Linux operating systems typically have just over
300 different system calls. Thus, in a 32-bit system, for
example, a 9-bit system call number field would accommo-
date 512 unique system calls. This is more than enough to
cover the 300 system calls, and still leaves space for a 23-bit
integrity marker value with more than 8 million possible
values.

In the illustrated example of FIG. 5, a modified system call
number 500 for an example 32-bit operating system includes
a 9-bit wide system call number field 510 and a 23-bit wide
collection of previously unused bits 520. The previously
unused bits 520 may be used to carry a new integrity marker
field 524. The previously unused bits 520 may also retain one
or more reserved bits 522 as well, if the desired length of the
integrity marker field 524 is selected to be shorter than the
total number of unused bits 520.

Accordingly, the integrity marker field 524 may be passed
to the operating system kernel 120 as part of the system call
number 500 when the call is invoked, as discussed above, and
may be configured to carry the particular integrity marker
value assigned to the invoking program. It will be appreciated
that the number and arrangement of bits shown in FIG. 5 is for
illustration purposes only, and may take any other form
acceptable to the particular operating system or computer
architecture being employed.

It will also be appreciated that in some embodiments, pro-
grams may not invoke system calls directly. Instead, libraries
of functions may be used, such as an implementation of the C
library (libc), to avoid loading redundant copies of the same
library function code into memory at run-time. For example,
with reference back to FIG. 1, some of the applications 112
may invoke certain functions, including system calls, through
function calls provided by one or more of the libraries 114.
Although convenient and common, this design may allow
malware to access operating system services (e.g., open a
shell) under certain circumstances without actually injecting
any malicious code. This is sometimes referred to as a
“return-to-libc” attack.

20

25

30

35

40

45

50

55

60

65

6

FIG. 6 illustrates the immunization of multiple instances of
a given program that share a common library of function calls
according to one or more embodiments. In this example, a
first instance 610 (“Process A”) of the instrumented program
220 and a second instance 620 (“Process B”) of the instru-
mented program 220 share a common library 630 of function
calls. Among other functions, the first instance 610 of the
instrumented program 220 may execute a file open function
(‘fopen’) and the second instance 620 of the instrumented
program 220 may execute a separate open function (‘open’).
The shared library 630 may include shared library functions
fopen() and open() such as those for system call number 5’
in Linux.

As shown, each instance 610, 620 of the instrumented
program 220 may be instantiated with its own integrity
marker value. In the illustrated example, the first instance 610
of' the instrumented program 220 is instantiated with a corre-
sponding integrity marker value ‘Marker_A’ while the second
instance 620 of the instrumented program 220 is instantiated
with a corresponding integrity marker value ‘Marker_B’.
Upon execution of their respective functions, each instance
610, 620 of the instrumented program 220 may insert its
corresponding integrity marker value into its called function.
This allows the malware immunization infrastructure 130 to
reliably determine if the initiating entity of the function call is
avalid program or is instead malware, even if the function call
is invoked via shared library functions.

Program Verification

Once a program has been instrumented according to one or
more of the various techniques described herein, its execution
may be subsequently verified by the malware immunization
infrastructure 130 as being valid or trustworthy, rather than
compromised by malware.

FIG. 7 is a flow diagram illustrating an example procedure
700 for the malware immunization infrastructure 130 to
verify program execution integrity according to one or more
embodiments. Process 700 begins at the point where the
operating system kernel 120 receives a request to launch a
program that has been instrumented to include at least one
integrity marker, such as the instrumented program 220 dis-
cussed above (block 710).

In some embodiments, the operating system kernel 120
may specifically generate an integrity marker value for the
program at run-time in response to the request (block 720).
For example, the operating system kernel 120 may generate
the integrity marker value by generating a random or pseu-
dorandom number to uniquely identify each instance (e.g.,
process or thread) of the program. Any known technique for
generating the random or pseudorandom number may be
used, such as a Naor-Reingold pseudorandom function, a
Park-Miller random number generator, linear feedback shift
registers, or others known in the art. However, in other
embodiments, a static value may be used for integrity marker
value. In either case, the integrity marker value may be stored
(e.g., at a given location in the memory 150) for future refer-
ence by the malware immunization infrastructure 130.

The operating system kernel 120 may instantiate the pro-
gram with the integrity marker value (block 730), and verify
the execution integrity of the program using the mal ware
immunization infrastructure 130 based on the integrity
marker value and any information received from the program
during execution (block 740). Based on whether the pro-
gram’s integrity is verified or not, and whether subsequent
processing is enabled, the operating system kernel 120 may
perform various post-verification activity (block 750), such

US 8,806,640 B2

7

as “malware forensics” operations. Such malware forensics
capabilities may allow the malware immunization infrastruc-
ture 130 to accurately locate and/or monitor certain malicious
activity of the malware 50.

FIG. 8 illustrates an example procedure for instantiating
the program with the integrity marker value according to one
or more embodiments. In this example, instantiating the pro-
gram (block 730) may include creating a process or thread for
the program (block 810), assigning the integrity marker value
to the process or thread (820), and providing the integrity
marker value to the process or thread, such as by placing it
into the process’ run-time environment (830). It will be appre-
ciated, however, that any suitable mechanism for launching
the program and identifying the appropriate integrity marker
value for the program to use may be employed. In some
embodiments, the appropriate integrity marker value for the
program to use may be pre-programmed such that the pro-
gram and the malware immunization infrastructure 130 know
apriori which value will be used for a given process or thread.

FIG. 9 illustrates an example procedure for verifying the
execution integrity of the program based on the integrity
marker value and information received from the program
during execution (block 740), and for performing various
post-verification activity (block 750) according to one or
more embodiments. In this example, the operating system
kernel 120 uses the malware immunization infrastructure 130
to check the information received from the program for an
integrity marker value that matches the integrity marker value
with which the program was instantiated (block 910). Check-
ing the information may include extracting the received infor-
mation from a system call or other function executed by the
program, for example.

If the information received from the program includes an
integrity marker value (‘yes’ at decision 920), the malware
immunization infrastructure 130 may compare the received
integrity marker value to the integrity marker value with
which the program was instantiated (block 930). If the infor-
mation received from the program includes an integrity
marker value that matches the integrity marker value with
which the program was instantiated (“yes’ at decision 940),
the malware immunization infrastructure 130 may declare
that the program is verified (block 950). It will be appreciated
that a “match” may not be identical to the original or gener-
ated value. For example, the original integrity marker value
with which the program was instantiated may be further pro-
cessed in an agreed upon manner by both the operating sys-
tem kernel 120 and the instrumented program, as a further
security measure.

Otherwise, if the information received from the program
does not include an integrity marker value (‘no’ at decision
920), or it includes an integrity marker value that does not
match the integrity marker value with which the program was
instantiated (‘no’ at decision 940), the malware immunization
infrastructure 130 may refrain from declaring that the pro-
gram is verified and instead determine whether any post-
verification activity (PVA) is warranted (decision 960).

In some situations, it may be desirable for the malware
immunization infrastructure 130 to perform one or more post-
verification operations, while in other situations it may be
desirable for the malware immunization infrastructure 130 to
disable such post-verification operations, at least for a period
of time. For example, it has been found that a newly instan-
tiated process or thread may in some situations not be able to
immediately locate the appropriate integrity marker value
placed into the program’s run-time environment and use it for
first few system calls. Thus, in some embodiments, determin-
ing whether any post-verification activity is warranted (deci-

20

25

30

40

45

55

60

8

sion 960) may include checking a flag maintained by the
malware immunization infrastructure 130 (e.g., at a given
memory location within the memory 150) to indicate whether
post-verification activity is yet appropriate. The flag may be
set, for example, based on whether the information received
from the program in the past has included, at least one integ-
rity marker value that matched the integrity marker value with
which the program was instantiated (i.e., at least one “yes’ at
decision 940). The reception of at least one matching integrity
marker value may act as a trigger to enable the flag, thereby
providing a grace period for the program to locate the appro-
priate integrity marker value and prevent the malware immu-
nization infrastructure 130 from declaring the program to be
compromised by malware until it is clear that the program has
located the appropriate integrity marker value, such that false
positives may be reduced or eliminated.

If post-verification activity is not enabled (‘no’ at decision
960), no further action is taken and the malware immuniza-
tion infrastructure 130 returns to checking subsequent system
call information. (block 910). If post-verification activity is in
fact enabled (“yes’ at decision 960), and the current informa-
tion received from the program does not include an integrity
marker value (‘no’ at decision 920) or includes an integrity
marker value that does not match the integrity marker value
with which the program was instantiated (‘no’ at decision
940), the malware immunization infrastructure 130 may
declare the program to be compromised by malware (block
1010).

The malware immunization infrastructure 130 may decide
whether to continue the compromised program and monitor it
for any malicious activity (decision 1020). This may be
referred to as “malware forensics,” and may be useful in
determining how the identified malware operates. If the mal-
ware immunization infrastructure 130 does not desire to
monitor the compromised program for subsequent malicious
activity (‘no’ at decision 1020), the operating system kernel
120 may simply stop the compromised program (block 1030).
Otherwise, if the malware immunization infrastructure 130
does desire to monitor the compromised program for subse-
quent malicious activity (‘yes’ at decision 1020), the operat-
ing system kernel 120 may allow the compromised program
to continue as long as desired (block 1040). In some embodi-
ments, a user level utility may be employed to allow a user of
the computer system 100 to inform the malware immuniza-
tion infrastructure 130 about which processes or threads it
should check for the integrity marker value, and what steps
should be taken once a compromised program is detected.

Many of the elements described in the disclosed embodi-
ments may be implemented as modules. A module is defined
here as an isolatable element that performs a defined function
and has a defined interface to other elements. The modules
described in this disclosure may be implemented in hardware,
a combination of hardware and software, firmware, wetware
(i.e., hardware with a biological element) or a combination
thereof, all of which are behaviorally equivalent. For
example, modules may be implemented using computer hard-
ware in combination with software routine(s) written in a
computer language (such as C, C++, Fortran, Java, Basic,
Matlab or the like) or a modeling/simulation program such as
Simulink, Stateflow, GNU Octave, or LabVIEW MathScript.
The software routine(s) may be initially stored in a computer-
readable medium, and loaded and executed by a processor.
Additionally, it may be possible to implement modules using
physical hardware that incorporates discrete or program-
mable analog, digital and/or quantum hardware. Examples of
programmable hardware include: computers, microcontrol-
lers, microprocessors, application-specific integrated circuits

US 8,806,640 B2

9

(ASICs); field programmable gate arrays (FPGAs); and com-
plex programmable logic devices (CPLDs). Computers,
microcontrollers and microprocessors are programmed using
languages such as assembly, C, C++ or the like. FPGAs,
ASICs and CPLDs are often programmed using hardware
description languages (HDL) such as VHSIC hardware
description language (VHDL) or Verilog that configure con-
nections between internal hardware modules with lesser
functionality on a programmable device. Finally, it needs to
be emphasized that the above mentioned technologies may be
used in combination to achieve the result of a functional
module.

While various embodiments have been described above, it
should be understood that they have been presented by way of
example, and not limitation. It will be apparent to persons
skilled in the relevant art(s) that various changes in form and
detail can be made therein without departing from the spirit
and scope. In fact, after reading the above description, it will
be apparent to one skilled in the relevant art(s) how to imple-
ment alternative embodiments. Thus, the present embodi-
ments should not be limited by any of the above described
exemplary embodiments. In particular, it should be noted
that, for example purposes, the above explanation has focused
on the example of an operating system oriented computing
system. However, one skilled in the art will recognize that
embodiments of the invention could be any computing sys-
tem subject to attacks by malware.

In addition, it should be understood that any figures that
highlight any functionality and/or advantages, are presented
for example purposes only. The disclosed architecture is suf-
ficiently flexible and configurable, such that it may be utilized
in ways other than that shown. For example, the steps listed in
any flowchart may be re-ordered or only optionally used in
some embodiments.

Further, the purpose of the Abstract of the Disclosure is to
enable the U.S. Patent and Trademark Office and the public
generally, and especially the scientists, engineers and practi-
tioners in the art who are not familiar with patent or legal
terms or phraseology, to determine quickly from a cursory
inspection the nature and essence of the technical disclosure
of the application. The Abstract of the Disclosure is not
intended to be limiting as to the scope in any way.

Finally, it is the applicant’s intent that only claims that
include the express language “means for” or “step for” be
interpreted under 35 U.S.C. 112, paragraph 6. Claims that do
not expressly include the phrase “means for” or “step for” are
not to be interpreted under 35 U.S.C. 112, paragraph 6.

What is claimed is:

1. A method of verifying program execution integrity
employing a computer system including at least one proces-
sor configured to execute an operating system kernel, the
method comprising:

the computer system receiving a request to launch a pro-

gram that has been instrumented to include at least one
integrity marker that is independent of other portions of
the program;

the computer system using the kernel, and not a compiler

outside of the kernel, to instantiate the program with a
unique and dynamically generated integrity marker
value; and

the computer system verifying the execution integrity of

the program based on the unique and dynamically gen-
erated integrity marker value and information received
from the program during execution.

2. The method of claim 1, further comprising the computer
system generating the integrity marker value for the program
at run-time in response to the request.

20

25

30

35

40

45

50

55

60

65

10

3. The method of claim 2, wherein the generating of the
integrity marker value comprises generating a random or
pseudorandom number to uniquely identify an instance of the
program execution.

4. The method of claim 1, wherein the instantiating of the
program comprises:

the computer system creating a process or thread for the

program;

the computer system assigning the unique and dynamically

generated integrity marker value to the process or
thread; and

the computer system providing the integrity marker value

to the process or thread in a run-time environment.

5. The method of claim 1, further comprising the computer
system extracting the received information from a system call
executed by the program.

6. The method of claim 1, wherein the verifying comprises
checking the information received from the program execu-
tion for an integrity marker value that matches the integrity
marker value with which the program was instantiated.

7. The method of claim 1, further comprising the computer
system monitoring subsequent malicious activity of the pro-
gram when the verifying fails.

8. The method of claim 1, wherein the program is declared
to be compromised by malware only after at least one integ-
rity marker value is received from the program that does not
match the unique and dynamically generated integrity marker
value with which the program was instantiated.

9. The method of claim 1, wherein the verifying comprises
checking the information received from the program execu-
tion for an integrity marker value that matches a further pro-
cessed value of the integrity marker value with which the
program was instantiated.

10. The method of claim 1, wherein using the kernel to
instantiate the program with an integrity marker value com-
prises assigning a new integrity marker value each time the
program is instantiated.

11. The method of claim 1, wherein the program comprises
a system call.

12. An apparatus for verifying program execution integrity,
the apparatus comprising:

at least one processor configured to:

execute an operating system kernel,

receive a request to launch a program that has been
instrumented to include at least one integrity marker
that is independent of other portions of the program,

use the kernel, and not a compiler outside of the kernel,
to instantiate the program with a unique and dynami-
cally generated integrity marker value, and

verify the execution integrity of the program based on
the integrity marker value and information received
from the program during execution; and

at least one non-transitory storage medium coupled to
the at least one processor and configured to store the
program.

13. The apparatus of claim 12, wherein the instantiating of
the program comprises:

creating a process or thread for the program;

assigning the unique and dynamically generated integrity

marker value to the process or thread; and

providing the integrity marker value to the process or

thread via a run-time environment.

14. The apparatus of claim 12, wherein the verifying com-
prises checking the information received from the program
execution for an integrity marker value that matches a further
processed value of the integrity marker value with which the
program was instantiated.

US 8,806,640 B2
11

15. The apparatus of claim 12, wherein the processor is
configured to use the kernel to instantiate the program with an
integrity marker value by assigning a new integrity marker
value each time the program is instantiated.

16. The apparatus of claim 12, wherein the program com- 5
prises a system call.

12

