
(12) United States Patent
Wang

US008806640B2

US 8,806,640 B2
Aug. 12, 2014

(10) Patent N0.:
(45) Date of Patent:

(54) PROGRAM EXECUTION INTEGRITY
VERIFICATION FOR A COMPUTER SYSTEM

(75) Inventor: Xinyuan Wang, Clifton, VA (US)

(73) Assignee: George Mason Intellectual Properties,
Inc., Fairfax, VA (U S)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 10 days.

(21) Appl.No.: 13/278,814

(22) Filed: Oct. 21, 2011

(65) Prior Publication Data

US 2012/0159630A1 Jun. 21, 2012

Related US. Application Data

(60) Provisional application No. 61/405,663, ?led on Oct.
22, 2010.

(51) Int. Cl.
G06F 11/00 (2006.01)

(52) US. Cl.
USPC 726/24; 726/26; 726/22; 713/176

(58) Field of Classi?cation Search
CPC G06F 21/51; G06F 21/50; G06F 21/52

USPC 726/24, 26, 22; 713/176
See application ?le for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2003/0135744 Al *
2008/0060077 A1 *
2009/0007100 A1 *

7/2003 Almeida 713/191

3/2008 Cowan et al. 1/2009 Field et a1. 718/1

Malware
immunization lnstrumented Program User-Space Frag rams

Tool 222 M
Q

OTHER PUBLICATIONS

Chen et al.(2003). Oblivious hashing: A stealthy software integrity
veri?cation primitive. Lecture Notes in Computer Science vol. 2578,
pp. 400-414.*
Jiang et al. (Sep. 2010). Arti?cial Malware Immunization based on
Dynamically Assigned Sense of Self, Sep. 2010. TechRepublic.
c0m.*
Hinton et. al (1999). SAM: Security Adaptation Manager, Annual
Computer Security Applications Conference (ACSAC), Phoenix,
AZ, Dec. 1999*
Love (2005). Linux Kernel Development Second Edition. Retrieved
Mar. 22, 2014 from http://www.makelinux.net/books/lde/
?u:app02. Relevant Sections: Chapter 5-System Calls and Appendix
BiKernel Random Number Generator.*
Yuqun Chen et al., “Oblivious Hashing: A Stealthy Software Integrity
Veri?cation Primitive”, Lecture Notes in Computer Science, vol.
2578, pp. 400-414 (2003).
Zinyuan Wang et al., “Arti?cial Malware Immunization Based on
Dynamically Assigned Sense of Self ’, TechRepublic.c0m, Sep. 2010
(16 pages).
Martin Abadi et al., “Control-Flow Integrity: Principles, Implemen
tations, and Applications”, In Proceedings of the 12th ACM Confer
ence on Computer and Communications Security (CCS 2005), pp.
340-353, Nov. 2005.

(Continued)

Primary Examiner * Brian Shaw

(74) Attorney, Agent, or Firm * DLA Piper LLP (U S)

(57) ABSTRACT

A computer system may be employed to verify program
execution integrity by receiving a request to launch a program
that has been instrumented to include at least one integrity
marker, instantiating the program with an integrity marker
value, and verifying the execution integrity of the program
based on the integrity marker value and information received
from the program during execution. A computer system may
also be employed for program instrumentation by modifying
the program to include at least one instruction for passing an
integrity marker value to an operating system kernel during
execution of the instruction.

16 Claims, 9 Drawing Sheets

Operating System Kernel
E

Malware Immunization
infrastructure
@

US 8,806,640 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Elias Bachaalany, “Detect if Your Program is Running Inside a Vir
tual Machine”, http://www.codeproject.com/system/vmdetect.asp,
Apr. 4, 2005 (6 pages).
“ghttped Daemon Buffer Over?ow Vulnerability”, http://
securityfocus.com/bid/2879, Published Jun. 17, 2001, updated Jul.
11, 2009 (5 pages).
“Snort/Source?re DCE/RPC Packet Reassembly Stack Buffer Over
?ow Vulnerability”, http://www. securityfocus.com/bid/ 22616, Pub
lished Feb. 19, 2007, updated Nov. 15, 2007 (5 pages).
Alexey Smirnov et al., “Automatic Detection, Identi?cation, and
Repair of Control-Hijacking Attacks”, In Proceedings of the 12th
Network and Distributed System Security Symposium (NDSS 2005),
Feb. 2005 (19 pages).
Elena Barrantes et al., “Randomized Instruction Set Emulation”,
ACM Transactions on Information and System Security, vol. 8, No. 1,
pp. 3-40, Feb. 2005.
Elena Barrantes et al., “Randomized Instruction Set Emulation to
Disrupt Binary Code Injection Attacks”, In Proceedings of the 10th
ACM Conference on Computer and Communications Security
(CCS’03), pp. 281-289, Oct. 2003.
Sandeep Bhatkar et al., “Data?ow Anomaly Detection”, In Proceed
ings of the 2006 IEEE Symposium on Securiytand Privacy (S&P
2006), May 2006 (15 pages).
Miguel Castro et al., “Secuirty Software by Enforcing Data-Flow
Integrity”, OSDI’06: 7th USENIX Symposium on Operating Sys
tems Design and Implementhtion, pp. 147-160. Nov. 2006.
Shuo Chen et al., “Defeating Memory Corruption Attacks via Pointer
Taintedness Detection”, In Proceedings on the 2005 International
Conference on Dependable Systems and Networks (DSN 2005), Jun.
2005 (10 pages).
Shuo Chen et al, “Non-Control-Data Attacks are Realistic Threats”,
14th USENIX Security Symposium, pp. 177-191, Aug. 2005.
Xu Chen et al., “Towards an Understanding of Anti-Virtualization
and Anti-Debugging Behavior in Modern Malware”, In Proceedings
of the 2008 International Conference on Dependable Systems and
Networks (DSN 2008). IEEE, Jun. 2008 (10 pages).
David M. Chess et al. “An Undetectable Computer Virus”, In 2000
Virus Bulletin Conference, Sep. 2000 (8 pages).
Fred Cohen, “Computer Viruses: Theory and Experiments”, Com
puters and Security, vol. 6, No. 1; pp. 22-35, Feb. 1987.
Crispan Cowan et al., “StackGuard: Automatic Adaptive Detection
and Prevention of Buffer-Over?ow Attacks”, In Proceedings of the
7th USENIX Security Symposium, pp. 63-78, Jan. 26-29, 1998.
Henry H. Feng et al., “Anomaly Detection Using Call Stack Infor
mation”, In Proceedings of the 2003 IEEE Symposium on Security
and Privacy (S&P 2003). IEEE, May 2003 (14 pages).
Stephanie Forrest et al.; “Computer Immunology”, Communications
ofthe ACM, vol. 40, No. 10, pp. 88-96, Oct. 1997.
Stephanie Forrest et al., “A Sense of Self for Unix Processes”, In
Proceedings of the 1996 IEEE Symposium on Security and Privacy
(S&P 1996), pp. 120-128; May 1996.
Mike Frantzen et al., “StackGhost: Hardware Facilitated Stack Pro
tection”, In Proceedings of the 10th USENIX Security Symposium,
pp. 55-66, Aug. 2001.
Jonathon T. Gif?n et al., “Environment-Sensitive Intrusion Detec
tion”, In Proceedings of the 8th International Symposium on Recent
Advances in Intrusion Detection (RAID 2005), Sep. 2005 (22 pages).
Rajeev Gopalakrishna et al., “Ef?cient Intrusion Detection Using
Automaton Inlining”, In Proceedings of the 2005 IEEE Symposium
on Security and Privacy (S&P 2005), pp. 18-31, May 2005.
Mohan Rajagopalan et al., “System Call Monitoring Using Authen
ticated System Calls”, IEEE Transactions on Dependable and Secure
Computing, vol. 3, No. 3, pp. 216-229, Jul. 2006.
Jun Xu et a1 ., “Transparent Runtime Randomization for Security”, In
Proceedings of the 22nd Symposium on Reliable and Distributed
Systems (SRDS 2003), pp. 260-269. Oct. 2003.

Gaurav S. Kc et al., “Countering Code-Injection Attacks with
Instruction-Set Randomization”, In Proceedings of the 10th ACM
Conference on Computer and Communications Security (CCS
2003), pp. 272-280, Oct. 2003.
Vladimir Kiriansky et al., “Secure Execution via Program Shepherd
ing”, In Proceedings of the 11th USENIX Security Symposium, pp.
191-206, Aug. 2002.
C. M. Linn et al., “Protecting against Unexpected System Calls”, In
Proceedings of the 14th USENIX Security Symposium, pp. 239-254,
Aug. 2005.
Danny Nebenzahl et al., “Install-Time Vaccination of Windows
Executables to Defend against Stack Smashing Attacks”, IEEE
Transactions on Dependable and Secure Computing (TDSC), vol. 3m
No. 1, pp. 78-90, Jan-Mar. 2006.
James Newsome et al., “Dynamic Taint Analysis for Automatic
Detection, Analysis, and Signature Generation of Exploits on Com
modity Software”, In Proceedings of the 12th Network and Distrib
uted System Security Symposium (NDSS 2005), Feb. 2005 (17
pages).
Roberto Perdisci et al., “Misleading Worm Signature Generators
Using Deliberate Noise Injection”, In Proceedings of the 2006 IEEE
Symposium on Security and Privacy (S&P 2006), May 2006 (17
pages).
Nick L. Petroni et al., “Automated Detection of Persistent Kernel
Control-Flow Attacks”, In Proceedings of the 17th ACM Conference
on Computer and Communications Security (CCS 2007), pp. 103
115, Oct. 2007.
Mohan Rajagopalan et al., “Authenticated System Calls”, In Pro
ceedings of the 2005 International Conference on Dependable Sys
tems and Networks (DSN’05), Jun. 2005 (10 pages).
Sandeep Bhatkar et al., “Ef?cient Techniques for Comprehensive
Protection from Memory Error Exploits”, In Proceedings of the 14th
USENIX Security Symposium, pp. 255-270, Aug. 2005.
Prateek Saxena et al., “Ef?cient Fine-Grained Binary Instrumenta
tion with Applications to Taint-Tracking”, In Proceedings of the 2008
International Symposium on Code Generation and Optimization
(CGO’08), Apr. 5, 2008 (10 pages).
R. Sekar et al., “A Fast Automation-Based Method for Detecting
Anomalous Program Behaviors”, In Proceedings of the 2001 IEEE
Symposium on Security and Privacy (S&P 2001), pp. 144-155, May
2001.
R. Sekar et a1 ., “Model-Carrying Code: A Practical Approach for Safe
Execution of Untrusted Applications”, In Proceedings of the 19th
ACM Symposium on Operating Systems Principles (SOSP’03), pp.
15-28, Oct. 2003.
Hovav Shacham, et al., “The Geometry of Innocent Flesh on the
Bone: Return-into-libc without Function Calls (on the x86)”, In
Proceedings of the 14th ACM Conference on Computer and Com
munications Security (CCS’07), pp. 552-561, Oct. 2007.
Florian Nentwich et al., “Cross Site Scripting Prevention with
Dynamic Data Tainting and Static Analysis”, In Proceedings of the
14th Network and Distributed System Security Symposium
(NDSS’07), Feb. 2007 (14 pages).
David Wagner et al., “Intrusion Detection via Static Analysis”, In
Proceedings of the 2001 IEEE Symposium on Security and Privacy
(S&P 2001), May 2001 (13 pages).
David Wagner et al., “Mimicry Attacks on Host-Based Intrusion
Detection Systems”, In Proceedings of the 9th ACM Conference on
Computer and Communications Security (CCS’02), Oct. 2002 (10
pages).
XiaoFeng Wang et al., “Packet Vaccine: Black-box Exploit Detection
and Signature Generation”, In Proceedings of the 13th ACM Confer
ence on Computer and Communications Security (CCS’06), pp.
37-46, Oct. 2006.
Christina Warrender et al., “Detecting Intrusions Using System Calls:
Alternative Data Models”, In Proceedings of the 1999 IEEE Sympo
sium on Security and Privacy (S&P 1999), pp. 133-145, May 1999.
John Wilander et al., “A Comparison of Publicly Available Tools for
Dynamic Buffer Over?ow Prevention”, In Proceedings of the 10th
Network and Distributed System Security Symposium (NDSS 2003),
Feb. 2003 (16 pages).

US 8,806,640 B2
Page 3

(56) References Cited

OTHER PUBLICATIONS

Wei Xu et al., “Taint-Enhanced Policy Enforcement: A Practical
Approach to Defeat aWide Range of Attacks”, In Proceedings of the
15th USENIX Security Symposium, Aug. 2006 (20 pages).

FM. Burnet, “Self and Not-Self”, Cambridge University Press, Cam
bridge, l969 (7 pages).
J. Klein, “Immunology: The Science of Self-Nonself Discrimina
tion”, John Wiley & Sons, New York, 1982 (19 pages).

* cited by examiner

US. Patent Aug. 12, 2014 Sheet 2 0f9 US 8,806,640 B2

Mama ye immunizai?n énsimmenéeed “mm m

“ v miegwiiy integs'éiy
Make? Marks? m

Vaéue \fzsiue f
23% E??f

Maiware ?mmmézatéen
in?aswucime

03$

Z; 35? M

US. Patent Aug. 12, 2014 Sheet 5 0f9 US 8,806,640 B2

§ Unwed Bits $ys§em Ca§§ Em g 52% g 5i§ E

Resv Mieg?w Make? Sysiem Na. i 522 52% ‘52 23 mm g béis §

US. Patent Aug. 12, 2014 Sheet 6 0f9 US 8,806,640 B2

{@220 {@220
§mmm§2ed Pragram émmmize? ngram

i Pmcsss A 5 Precess B 3
= a»600 =' awszs
05 5 ii 5

fopen{...§‘\?arker_A) open{..VMarke;'__B) 0 21

Shared Lébrag'y

a
a

00000000000 __

\v._..........___.......__....___.......,"4.....v...>..v.,_~._“...._:

US. Patent Aug. 12, 2014 Sheet 8 0f9 US 8,806,640 B2

i?staméaie ng 0am

{Creme pmsess as“ ?weaa? {m pmgsam

é,
Assign integrity marker vaiise is pmsew as"

ihfead

vaéde Entegmy marker is wscess m“ iimeaii via
5&3 mn-téme envémnmem

Rgn 3

US 8,806,640 B2
1

PROGRAM EXECUTION INTEGRITY
VERIFICATION FOR A COMPUTER SYSTEM

This invention was made with government support under
grant number CNS-0845042 funded by the National Science
Foundation. The government has certain rights in this inven
tion.

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the bene?t of US. Provisional
Application No. 61/405,663, ?led on Oct. 22, 2010, entitled
“Malware Immunization” which is hereby incorporated by
reference in its entirety.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a system diagram illustrating an example com
puter system according to one or more embodiments of the
present invention.

FIG. 2 is a ?ow diagram providing a basic overview of an
example program execution integrity veri?cation procedure
using a malware immunization tool and a malware immuni
zation infrastructure according to one or more embodiments.

FIG. 3 is a ?ow diagram illustrating an example procedure
for a malware immunization tool to instrument a program
from an original program according to one or more embodi
ments.

FIG. 4 illustrates an example modi?cation of an original
program at the assembly code level to instrument a program
according to one or more embodiments.

FIG. 5 illustrates an example modi?cation of a system call
number according to one or more embodiments.

FIG. 6 illustrates the immunization of multiple instances of
a given program that share a common library of function calls
according to one or more embodiments.

FIG. 7 is a ?ow diagram illustrating an example procedure
for a malware immunization infrastructure to verify program
execution integrity according to one or more embodiments.

FIG. 8 illustrates an example procedure for instantiating
the program with the integrity marker value according to one
or more embodiments.

FIG. 9 illustrates an example procedure for verifying the
execution integrity of the program based on the integrity
marker value and information received from the program
during execution, and for performing various post-veri?ca
tion activity according to one or more embodiments.

DETAILED DESCRIPTION OF EMBODIMENTS

Various embodiments of the present invention are directed
to the veri?cation of program execution integrity to protect
against malware. Example embodiments are described below
with reference to the drawings, wherein like reference numer
als are used to refer to like elements throughout. The term
“embodiments of the invention” does not require that all
embodiments of the invention include the discussed feature or
mode of operation. Alternate embodiments may be devised
without departing from the scope of the invention, and well
known elements of the invention may not be described in
detail or may be omitted so as not to obscure the relevant
details.

In addition, the terminology used herein is for the purpose
of describing particular embodiments only and is not
intended to be limiting of the invention. For example, as used

20

25

30

35

40

45

50

55

60

65

2
herein, the singular forms a, an,” and “the” are intended to
include the plural forms as well, unless the context clearly
indicates otherwise. It will be further understood that the
terms “comprises,” “comprising,” “includes,” and/or “includ
ing,” when used herein, specify the presence of stated fea
tures, integers, steps, operations, elements, and/or compo
nents, but do not preclude the presence or addition of one or
more other features, integers, steps, operations, elements,
components, and/or groups thereof.

System Overview

FIG. 1 is a system diagram illustrating an example com
puter system according to one or more embodiments of the
present invention. As shown, the computer system 100 may
include user-space programs 110, an operating system kernel
120, and various hardware components, such as a central
processing unit 140, memory 150, and input/ output (I/O)
devices 160. It will be appreciated that the CPU 140 is shown
as a single unit for illustration purposes only, and may include
one or multiple CPUs. Further, each CPU may be a single
core processor or a multi-core processor that combines two or

more independent processing cores. Example I/O devices 160
may include hard disks, keyboards, computer mice, printers,
displays, etc.
The operating system kernel 120 generally refers to the

component of many computer operating systems that acts as
a bridge between software programs and the physical data
processing performed at the hardware level. Responsibilities
of the operating system kernel 120 may include managing the
computer system’s 100 resources as well as the communica
tion between hardware and software. For example, the oper
ating system kernel 120 may manage the user-space pro
grams’ 110 access to the CPU 140, memory 150, and I/O
devices 160 through various functions and/or system calls.
The memory 150 may be used to store both program

instructions and data, and may be divided by the operating
system kernel 120 into both “kernel space” and “user space.”
Kernel space includes memory that may be used for running
the operating system kernel 120, kernel extensions, and/or
some device drivers, but is not usually made accessible to the
user-space programs 110. User space includes memory that
may be set up by the operating system kernel 120 for operat
ing a user’s context of execution, processes, threads, etc.
The user-space programs 110 may include various types of

programs, such as applications 112 and libraries 114. The
libraries 114 may include a variety of function calls, for
example, which may invoke one or more system calls and
may be shared among the applications 112. This sharing may
allow multiple processes or threads from the applications 112
to use a common, single copy of a given library function
during execution to avoid unnecessary duplication of code
stored in the memory 150 at run-time.
As is further illustrated in FIG. 1, the computer system 100

may be exposed to one or more types of malware 50, such as
viruses, worms, botnets, rootkits, trojans, spyware, keylog
gers, etc., that may attempt to access the computer system 100
through the user- space programs 1 1 0. To protect against mali
cious actions of the malware 50, the user-space programs 110
may be specially instrumented, according to various tech
niques disclosed herein, by a malware immunization tool 60
such that a malware immunization infrastructure 130 oper
ated by the operating system kernel 120 may verify the execu
tion integrity of s given user-space program 110 before grant
ing it control ofthe CPU 140, memory 150, I/O devices 160,
etc.

US 8,806,640 B2
3

For illustration purposes, the malware immunization infra
structure 130 is shown as a component of the operating sys
tem kernel 120. However, it will be appreciated that the mal
ware immunization infrastructure 130 may be implemented
in other embodiments as an entirely separate entity from the
operating system kernel 120. In still other embodiments, the
operating system kernel 120 may entirely sub sume the opera
tions of the malware immunization infrastructure 130. For
example, the operating system kernel 120 may be specially
instrumented to perform the operations otherwise attributed
herein to the malware immunization infrastructure 130.

Similarly, the malware immunization tool 60 is shown for
illustration purposes as being separate from the computer
system 100. However, in general, the malware immunization
tool 60 may be separate from or integral to the computer
system 100, and may be operated independently or at the
direction of the operating system kernel 120, as shown by the
dashed line in FIG. 1. In some embodiments, the malware
immunization tool 60 may be located remotely from the com
puter system 100 and be implemented as, or operated by, a
separate computer system (not shown). In some embodi
ments, the malware immunization tool 60 may be imple
mented as, or otherwise include, a user level utility, such as a
compiler.

FIG. 2 is a ?ow diagram providing a basic overview of an
example program execution integrity veri?cation procedure
using the malware immunization tool 60 and the malware
immunization infrastructure 130 according to one or more
embodiments. In the illustrated example, the malware immu
nization tool 60 produces an instrumented program 220 from
an original program 210 that is modi?ed, as described herein,
to protect it against various control ?ow hijacking attacks that
may be mounted by the malware 50, such as buffer over?ow
attacks, return-to-libc attacks, return-oriented exploits, etc.,
in an attempt to gain access to the CPU 140, memory 150, I/O
devices 160, etc. The instrumented program 220 may then be
stored among the user-space programs 110 for operation on
the computer system 100.
As will be described below in more detail, the malware

immunization infrastructure 130 may subsequently exchange
one or more integrity marker values 230, 240 with the instru
mented program 220 during execution to verify its integrity
before granting it control of the CPU 140, memory 150, I/O
devices 160, etc.

Program Instrumentation

FIG. 3 is a ?ow diagram illustrating an example procedure
300 for the malware immunization tool 60 to instrument a
program from an original program according to one or more
embodiments. In this example, the malware immunization
tool 60 modi?es an original program (e.g., the original pro
gram 210) to include at least one instruction for passing an
integrity marker value to the operating system kernel 120
during execution of the instruction (block 310) for run-time
veri?cation of program execution integrity by the malware
immunization infrastructure 130. Modifying the program
may include modifying at least one existing instruction of the
program or adding at least one new instruction to the program.
The modi?ed or added instruction may be, for example, made
part of a system call requesting access to one or more
resources of the computer system 100, such as control of the
CPU 140, memory 150, I/O devices 160, etc.

The malware immunization tool 60 may further modify the
original program to accept a given value (e.g., a random or
pseudorandom number) from the operating system kernel
120 to use as the integrity marker value (block 320). In some

10

20

25

30

35

40

45

50

55

60

65

4
embodiments, these modi?cations may be performed by a
binary rewriting of the original program at the assembly code
level. In other embodiments, these modi?cations may be per
formed at the source code level, and may require the program
to be recompiled to produce an instrumented program (e.g.,
the instrumented program 220) (block 330). It will be appre
ciated that any suitable mechanism for modifying the original
program may be employed.

FIG. 4 illustrates an example modi?cation of an original
program at the assembly code level to instrument a program
according to one or more embodiments. As shown, the origi
nal program (e. g., the original program 210) includes original
assembly code 420 that corresponds to original source code
410. The original assembly code 420 includes various
instructions that may correspond to various functions in the
original source code 410. In the illustrated example, the origi
nal source code 410 includes, among other elements, an
example function (‘funcA’) nested inside a parent function
(‘funcB’) and accepting one or more parameters.
The example function funcA may in some embodiments

correspond to a system call, for example, such as a ‘write’
function accepting a given value (e.g., ‘100’) desired to be
written to the memory 150 at a desired location identi?ed by
a location pointer (‘ptr’). Other example system calls may
include ‘open’ functions, ‘read’ functions, ‘close’ functions,
‘wait’ functions, ‘exec’ functions, ‘fork’ functions, ‘exit
functions, functions, etc. When funcA is called, various sup
porting instructions in the original assembly code 420 (e.g.,
‘push’ and/ or ‘add’ instructions) may be executed for pushing
corresponding values to the top of the program’ s stack (iden
ti?ed by the pointer ‘esp’) and otherwise executing the func
tion.
The original assembly code 420 is instrumented by the

malware immunization tool 60 to produce immunized assem
bly code 430. As shown, the immunized assembly code 430
may include one or more additional or modi?ed instructions

(e.g., ‘lea’, ‘push’, and/or ‘add’ instructions) for locating an
integrity marker value (‘eax’) provided by the operating sys
tem kernel 120 and passing it back to the operating system
kernel 120 when funcA is called. In this way, the integrity
marker value may be passed to the operating system kernel
120 as if it was an additional parameter of funcA, for
example, as shown in the corresponding immunized source
code 440.

It will be appreciated, however, that modi?cations to the
actual source code are not required. In some designs, the
original source code 410 may not be accessible to the mal
ware immunization tool 60. Regardless, instrumentation of
the original program 21 0 may be performed at the binary level
without access to the original source code 410. The instru
mented program 220 may therefore operate as if its source
code has been modi?ed to include the integrity marker value
as shown in the immunized source code 440, even if access to
the original source code 410 is not available or otherwise
feasible.
The above-described instrumentation may accordingly be

made effectively transparent to the user. For example, in the C
programming language, the integrity marker value may be
implicitly passed as the rightmost parameter of the example
function funcA, in addition to any other existing parameters.
Because the default C language function calling convention
passes parameters from right to left, which inherently sup
ports a variable number of parameters, passing the integrity
marker value as an extra implicit rightmost parameter to C
language function calls does not change the original seman
tics of the function.

a

US 8,806,640 B2
5

However, in some embodiments, it may be desirable to
provide an additional indicator to the operating system kernel
120 to speci?cally identify the location of the integrity marker
value. For example, for functions that natively accept and
pass a variable number of parameters (e.g., the ‘printf’ func
tion), a canary may be used as an indicator of the location of
the integrity marker value among the original parameters. The
canary word may be randomly chosen by the malware instru
mentation tool 60, for example, and different programs may
be instrumented with different canary words.

It will of course be appreciated that the example code
illustrated in FIG. 4 is presented in the C programming lan
guage by way of example only, and that other programming
languages may be used in other embodiments.

Further, it will also be appreciated that the speci?c mecha
nism in the example of FIG. 4 for passing the integrity marker
value to the operating system kernel 120 as an additional
parameter is also provided merely as an example, and that any
mechanism for passing the integrity marker value to the oper
ating system kernel 120 may be used. For example, the sys
tem call number itself may be modi?ed to include the integ
rity marker value in some embodiments.

FIG. 5 illustrates an example modi?cation of a system call
number according to one or more embodiments. Although
many operating systems provide hundreds of system calls, the
relatively large 32-bit or even 64-bit number schemes used by
modern system architectures provide a number of unused bits
in the system call number itself that may be used to pass the
integrity marker value to the operating system kernel 120. For
example, the Linux operating systems typically have just over
300 different system calls. Thus, in a 32-bit system, for
example, a 9-bit system call number ?eld would accommo
date 512 unique system calls. This is more than enough to
cover the 300 system calls, and still leaves space for a 23-bit
integrity marker value with more than 8 million possible
values.

In the illustrated example of FIG. 5, a modi?ed system call
number 500 for an example 32-bit operating system includes
a 9-bit wide system call number ?eld 510 and a 23-bit wide
collection of previously unused bits 520. The previously
unused bits 520 may be used to carry a new integrity marker
?eld 524. The previously unused bits 520 may also retain one
or more reserved bits 522 as well, if the desired length of the
integrity marker ?eld 524 is selected to be shorter than the
total number of unused bits 520.

Accordingly, the integrity marker ?eld 524 may be passed
to the operating system kernel 120 as part of the system call
number 500 when the call is invoked, as discussed above, and
may be con?gured to carry the particular integrity marker
value assigned to the invoking program. It will be appreciated
that the number and arrangement of bits shown in FIG. 5 is for
illustration purposes only, and may take any other form
acceptable to the particular operating system or computer
architecture being employed.

It will also be appreciated that in some embodiments, pro
grams may not invoke system calls directly. Instead, libraries
of functions may be used, such as an implementation of the C
library (libc), to avoid loading redundant copies of the same
library function code into memory at run-time. For example,
with reference back to FIG. 1, some of the applications 112
may invoke certain functions, including system calls, through
function calls provided by one or more of the libraries 114.
Although convenient and common, this design may allow
malware to access operating system services (e.g., open a
shell) under certain circumstances without actually injecting
any malicious code. This is sometimes referred to as a
“retum-to-libc” attack.

20

25

30

35

40

45

50

55

60

65

6
FIG. 6 illustrates the immunization of multiple instances of

a given program that share a common library of function calls
according to one or more embodiments. In this example, a
?rst instance 610 (“Process A”) of the instrumented program
220 and a second instance 620 (“Process B”) of the instru
mented program 220 share a common library 630 of function
calls. Among other functions, the ?rst instance 610 of the
instrumented program 220 may execute a ?le open function
(‘fopen’) and the second instance 620 of the instrumented
program 220 may execute a separate open function (‘open’).
The shared library 630 may include shared library functions
fopen() and open() such as those for system call number ‘5’
in Linux.
As shown, each instance 610, 620 of the instrumented

program 220 may be instantiated with its own integrity
marker value. In the illustrated example, the ?rst instance 610
of the instrumented program 220 is instantiated with a corre
sponding integrity marker value ‘Marker_A’ while the second
instance 620 of the instrumented program 220 is instantiated
with a corresponding integrity marker value ‘Marker_B’.
Upon execution of their respective functions, each instance
610, 620 of the instrumented program 220 may insert its
corresponding integrity marker value into its called function.
This allows the malware immunization infrastructure 130 to
reliably determine if the initiating entity of the function call is
a valid program or is instead malware, even if the function call
is invoked via shared library functions.

Program Veri?cation

Once a program has been instrumented according to one or
more of the various techniques described herein, its execution
may be subsequently veri?ed by the malware immunization
infrastructure 130 as being valid or trustworthy, rather than
compromised by malware.

FIG. 7 is a ?ow diagram illustrating an example procedure
700 for the malware immunization infrastructure 130 to
verify program execution integrity according to one or more
embodiments. Process 700 begins at the point where the
operating system kernel 120 receives a request to launch a
program that has been instrumented to include at least one
integrity marker, such as the instrumented program 220 dis
cussed above (block 710).

In some embodiments, the operating system kernel 120
may speci?cally generate an integrity marker value for the
program at run-time in response to the request (block 720).
For example, the operating system kernel 120 may generate
the integrity marker value by generating a random or pseu
dorandom number to uniquely identify each instance (e.g.,
process or thread) of the program. Any known technique for
generating the random or pseudorandom number may be
used, such as a Naor-Reingold pseudorandom function, a
Park-Miller random number generator, linear feedback shift
registers, or others known in the art. However, in other
embodiments, a static value may be used for integrity marker
value. In either case, the integrity marker value may be stored
(e.g., at a given location in the memory 150) for future refer
ence by the malware immunization infrastructure 130.
The operating system kernel 120 may instantiate the pro

gram with the integrity marker value (block 730), and verify
the execution integrity of the program using the mal ware
immunization infrastructure 130 based on the integrity
marker value and any information received from the program
during execution (block 740). Based on whether the pro
gram’s integrity is veri?ed or not, and whether subsequent
processing is enabled, the operating system kernel 120 may
perform various post-veri?cation activity (block 750), such

US 8,806,640 B2
7

as “malware forensics” operations. Such malware forensics
capabilities may allow the malware immunization infrastruc
ture 130 to accurately locate and/ or monitor certain malicious
activity of the malware 50.

FIG. 8 illustrates an example procedure for instantiating
the program with the integrity marker value according to one
or more embodiments. In this example, instantiating the pro
gram (block 730) may include creating a process or thread for
the program (block 810), assigning the integrity marker value
to the process or thread (820), and providing the integrity
marker value to the process or thread, such as by placing it
into the process’ run-time environment (830). It will be appre
ciated, however, that any suitable mechanism for launching
the program and identifying the appropriate integrity marker
value for the program to use may be employed. In some
embodiments, the appropriate integrity marker value for the
program to use may be pre-programmed such that the pro
gram and the malware immunization infrastructure 130 know
a priori which value will be used for a given process or thread.

FIG. 9 illustrates an example procedure for verifying the
execution integrity of the program based on the integrity
marker value and information received from the program
during execution (block 740), and for performing various
post-veri?cation activity (block 750) according to one or
more embodiments. In this example, the operating system
kernel 120 uses the malware immunization infrastructure 130
to check the information received from the program for an
integrity marker value that matches the integrity marker value
with which the program was instantiated (block 910). Check
ing the information may include extracting the received infor
mation from a system call or other function executed by the
program, for example.

If the information received from the program includes an
integrity marker value (‘yes’ at decision 920), the malware
immunization infrastructure 130 may compare the received
integrity marker value to the integrity marker value with
which the program was instantiated (block 930). If the infor
mation received from the program includes an integrity
marker value that matches the integrity marker value with
which the program was instantiated (‘yes’ at decision 940),
the malware immunization infrastructure 130 may declare
that the program is veri?ed (block 950). It will be appreciated
that a “match” may not be identical to the original or gener
ated value. For example, the original integrity marker value
with which the program was instantiated may be further pro
cessed in an agreed upon manner by both the operating sys
tem kernel 120 and the instrumented program, as a further
security measure.

Otherwise, if the information received from the program
does not include an integrity marker value (‘no’ at decision
920), or it includes an integrity marker value that does not
match the integrity marker value with which the program was
instantiated (‘no’ at decision 940), the malware immunization
infrastructure 130 may refrain from declaring that the pro
gram is veri?ed and instead determine whether any post
veri?cation activity (PVA) is warranted (decision 960).

In some situations, it may be desirable for the malware
immunization infrastructure 130 to perform one or more po st
veri?cation operations, while in other situations it may be
desirable for the malware immunization infrastructure 130 to
disable such post-veri?cation operations, at least for a period
of time. For example, it has been found that a newly instan
tiated process or thread may in some situations not be able to
immediately locate the appropriate integrity marker value
placed into the program’s run-time environment and use it for
?rst few system calls. Thus, in some embodiments, determin
ing whether any post-veri?cation activity is warranted (deci

20

25

30

35

40

45

50

55

60

65

8
sion 960) may include checking a ?ag maintained by the
malware immunization infrastructure 130 (e.g., at a given
memory location within the memory 150) to indicate whether
post-veri?cation activity is yet appropriate. The ?ag may be
set, for example, based on whether the information received
from the program in the past has included, at least one integ
rity marker value that matched the integrity marker value with
which the program was instantiated (i.e., at least one ‘yes’ at
decision 940). The reception of at least one matching integrity
marker value may act as a trigger to enable the ?ag, thereby
providing a grace period for the program to locate the appro
priate integrity marker value and prevent the malware immu
nization infrastructure 130 from declaring the program to be
compromised by malware until it is clear that the program has
located the appropriate integrity marker value, such that false
positives may be reduced or eliminated.

If post-veri?cation activity is not enabled (‘no’ at decision
960), no further action is taken and the malware immuniza
tion infrastructure 130 returns to checking sub sequent system
call information. (block 91 0). If post-veri?cation activity is in
fact enabled (‘yes’ at decision 960), and the current informa
tion received from the program does not include an integrity
marker value (‘no’ at decision 920) or includes an integrity
marker value that does not match the integrity marker value
with which the program was instantiated (‘no’ at decision
940), the malware immunization infrastructure 130 may
declare the program to be compromised by malware (block
1010).
The malware immunization infrastructure 130 may decide

whether to continue the compromised program and monitor it
for any malicious activity (decision 1020). This may be
referred to as “malware forensics,” and may be useful in
determining how the identi?ed malware operates. If the mal
ware immunization infrastructure 130 does not desire to
monitor the compromised program for subsequent malicious
activity (‘no’ at decision 1020), the operating system kernel
120 may simply stop the compromised program (block 1030).
Otherwise, if the malware immunization infrastructure 130
does desire to monitor the compromised program for subse
quent malicious activity (‘yes’ at decision 1020), the operat
ing system kernel 120 may allow the compromised program
to continue as long as desired (block 1040). In some embodi
ments, a user level utility may be employed to allow a user of
the computer system 100 to inform the malware immuniza
tion infrastructure 130 about which processes or threads it
should check for the integrity marker value, and what steps
should be taken once a compromised program is detected.
Many of the elements described in the disclosed embodi

ments may be implemented as modules. A module is de?ned
here as an isolatable element that performs a de?ned function
and has a de?ned interface to other elements. The modules
described in this disclosure may be implemented in hardware,
a combination of hardware and software, ?rmware, wetware
(i.e., hardware with a biological element) or a combination
thereof, all of which are behaviorally equivalent. For
example, modules may be implemented using computer hard
ware in combination with software routine(s) written in a
computer language (such as C, C++, Fortran, Java, Basic,
Matlab or the like) or a modeling/ simulation program such as
Simulink, State?ow, GNU Octave, or LabVIEW MathScript.
The software routine(s) may be initially stored in a computer
readable medium, and loaded and executed by a processor.
Additionally, it may be possible to implement modules using
physical hardware that incorporates discrete or program
mable analog, digital and/or quantum hardware. Examples of
programmable hardware include: computers, microcontrol
lers, microprocessors, application-speci?c integrated circuits

US 8,806,640 B2
9

(ASICs); ?eld programmable gate arrays (FPGAs); and com
plex programmable logic devices (CPLDs). Computers,
microcontrollers and microprocessors are programmed using
languages such as assembly, C, C++ or the like. FPGAs,
ASICs and CPLDs are often programmed using hardware
description languages (HDL) such as VHSIC hardware
description language (V HDL) or Verilog that con?gure con
nections between internal hardware modules with lesser
functionality on a programmable device. Finally, it needs to
be emphasized that the above mentioned technologies may be
used in combination to achieve the result of a functional
module.

While various embodiments have been described above, it
should be understood that they have been presented by way of
example, and not limitation. It will be apparent to persons
skilled in the relevant art(s) that various changes in form and
detail can be made therein without departing from the spirit
and scope. In fact, after reading the above description, it will
be apparent to one skilled in the relevant art(s) how to imple
ment alternative embodiments. Thus, the present embodi
ments should not be limited by any of the above described
exemplary embodiments. In particular, it should be noted
that, for example purposes, the above explanation has focused
on the example of an operating system oriented computing
system. However, one skilled in the art will recognize that
embodiments of the invention could be any computing sys
tem subject to attacks by malware.

In addition, it should be understood that any ?gures that
highlight any functionality and/or advantages, are presented
for example purposes only. The disclosed architecture is suf
?ciently ?exible and con?gurable, such that it may be utilized
in ways other than that shown. For example, the steps listed in
any ?owchart may be re-ordered or only optionally used in
some embodiments.

Further, the purpose of the Abstract of the Disclosure is to
enable the Us. Patent and Trademark O?ice and the public
generally, and especially the scientists, engineers and practi
tioners in the art who are not familiar with patent or legal
terms or phraseology, to determine quickly from a cursory
inspection the nature and essence of the technical disclosure
of the application. The Abstract of the Disclosure is not
intended to be limiting as to the scope in any way.

Finally, it is the applicant’s intent that only claims that
include the express language “means for” or “step for” be
interpreted under 35 U.S.C. 112, paragraph 6. Claims that do
not expressly include the phrase “means for” or “step for” are
not to be interpreted under 35 U.S.C. 1 12, paragraph 6.
What is claimed is:
1. A method of verifying program execution integrity

employing a computer system including at least one proces
sor con?gured to execute an operating system kernel, the
method comprising:

the computer system receiving a request to launch a pro
gram that has been instrumented to include at least one
integrity marker that is independent of other portions of
the program;

the computer system using the kernel, and not a compiler
outside of the kernel, to instantiate the program with a
unique and dynamically generated integrity marker
value; and

the computer system verifying the execution integrity of
the program based on the unique and dynamically gen
erated integrity marker value and information received
from the program during execution.

2. The method of claim 1, further comprising the computer
system generating the integrity marker value for the program
at run-time in response to the request.

20

25

30

35

40

45

50

55

60

65

10
3. The method of claim 2, wherein the generating of the

integrity marker value comprises generating a random or
pseudorandom number to uniquely identify an instance of the
program execution.

4. The method of claim 1, wherein the instantiating of the
program comprises:

the computer system creating a process or thread for the
Program;

the computer system assigning the unique and dynamically
generated integrity marker value to the process or
thread; and

the computer system providing the integrity marker value
to the process or thread in a run-time environment.

5. The method of claim 1, further comprising the computer
system extracting the received information from a system call
executed by the program.

6. The method of claim 1, wherein the verifying comprises
checking the information received from the program execu
tion for an integrity marker value that matches the integrity
marker value with which the program was instantiated.

7. The method of claim 1, further comprising the computer
system monitoring subsequent malicious activity of the pro
gram when the verifying fails.

8. The method of claim 1, wherein the program is declared
to be compromised by malware only after at least one integ
rity marker value is received from the program that does not
match the unique and dynamically generated integrity marker
value with which the program was instantiated.

9. The method of claim 1, wherein the verifying comprises
checking the information received from the program execu
tion for an integrity marker value that matches a further pro
cessed value of the integrity marker value with which the
program was instantiated.

10. The method of claim 1, wherein using the kernel to
instantiate the program with an integrity marker value com
prises assigning a new integrity marker value each time the
program is instantiated.

11. The method of claim 1, wherein the program comprises
a system call.

12. An apparatus for verifying program execution integrity,
the apparatus comprising:

at least one processor con?gured to:
execute an operating system kernel,
receive a request to launch a program that has been

instrumented to include at least one integrity marker
that is independent of other portions of the program,

use the kernel, and not a compiler outside of the kernel,
to instantiate the program with a unique and dynami
cally generated integrity marker value, and

verify the execution integrity of the program based on
the integrity marker value and information received
from the program during execution; and

at least one non-transitory storage medium coupled to
the at least one processor and con?gured to store the
program.

13. The apparatus of claim 12, wherein the instantiating of
the program comprises:

creating a process or thread for the program;
assigning the unique and dynamically generated integrity

marker value to the process or thread; and
providing the integrity marker value to the process or

thread via a run-time environment.
14. The apparatus of claim 12, wherein the verifying com

prises checking the information received from the program
execution for an integrity marker value that matches a further
processed value of the integrity marker value with which the
program was instantiated.

US 8,806,640 B2
11

15. The apparatus of claim 12, wherein the processor is
con?gured to use the kernel to instantiate the program With an
integrity marker value by assigning a neW integrity marker
value each time the program is instantiated.

16. The apparatus of claim 12, Wherein the program com- 5
prises a system call.

12

