CS485 AUTONOMOUS ROBOTICS

Homework 1 Kinematics

Due: September 21 before class

Name:

G Number:

Email:

1 Transformations

1.1 Which two components does a rigid body transformation entail? How do we represent such a transformation? (10 points)
1.2 List all five types of transformations in a plane, how their transformation matrices look like, and how many degrees of freedom they have. (15 points)
1.3 Why do we need pose, instead of position, to represent a robot configuration? (5 points)
1.4 List (at least) two ways to represent rotations. (10 points)

1.5 Frame Transformation for Navigation (20 points)

During the BARN Challenge, the Jackal starts at $(x, y, y a w)=\left(0,0,0^{\circ}\right)$ and navigates to a goal at $(\mathrm{x}, \mathrm{y})=(5,6)$, both expressed in the world frame. Now the Jackal reaches $(1,1$, $\left.45^{\circ}\right)$. What is the coordinates of the goal expressed in the current robot frame of the Jackal?

Please provide detailed derivation and schematics if necessary to illustrate your derivation.

2 Kinematics

2.1 Forward Kinematics (20 points)

You have a three-link manipulator robot. The 1st link is attached to the ground with a 0.3 m length and a 30° angle with respect to the horizontal axis (towards right); The 2nd link is 0.2 m and attached to the end of the 1 st link with a 45° angle with respect to the 1 st link; The 3 rd link is 0.3 m and attached to the end of the 2 nd link with a 30° angle with respect to the 2 nd link. Please draw a diagram of this manipulator and derive the position of the end-effector.

2.2 Inverse Kinematics (20 points)

For the same manipulator robot above, the end-effector is at $(0.2,0.6)$. How many degrees do all three joints need to rotate from $\left(0^{\circ}, 0^{\circ}, 0^{\circ}\right)$ so that the effector can reach this position? Please at least provide one solution (you will get extra 10 points if you provide a 2 nd solution).

