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Abstract— The forth Benchmark Autonomous Robot Navi-
gation (BARN) Challenge took place at the 2025 IEEE In-
ternational Conference on Robotics and Automation (ICRA
2025) in Atlanta, GA, USA and continued to evaluate the
performance of state-of-the-art autonomous ground navigation
systems in highly constrained environments. It is the first
time The BARN Challenge came back to North American
since the first challenge in Philadelphia, after going around
the world to London (Europe) and Yokohama (Asia). Nine
teams participated in the simulation competition, eight of which
were invited to the physical competition, while four of them
finally attended in Atlanta. A few changes were adopted for
the first time, such as introducing dynamic obstacles and
adjusting the system tuning rules, to encourage more robust
navigation performance. In this article, we discuss the challenge,
the approaches used by the three winning teams, and lessons
learned to direct future research and competitions.

I. THE FORTH BARN CHALLENGE OVERVIEW

The forth BARN Challenge took place as a conference
competition at ICRA 2025 in Atlanta, GA, USA. As a
continuation of the first, second, and third BARN Challenge
at ICRA 2022, 2023, and 2024 in Philadelphia, London, and
Yokohama respectively, the forth challenge aimed to evaluate
the capability of state-of-the-art navigation systems to move
robots through static, highly-constrained obstacle courses,
an ostensibly simple problem even for many experienced
robotics researchers, but in fact, as the results from every
year’s competitions suggest, a problem far away from being
solved [1]–[3].

Each team needed to develop an entire navigation software
stack for a standardized and provided mobile robot, i.e., a
Clearpath Jackal [4] with a 2D 270°-field-of-view Hokuyo
LiDAR for perception and a differential drive system with
2m/s maximal speed for actuation. The developed navigation
software stack needed to autonomously drive the robot from
a given starting location through a dense obstacle field to
a given goal without any collision with obstacles or any
human interventions. The team whose system could best
accomplish this task within the least amount of time would
win the competition. The forth BARN Challenge had two
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phases: a qualifying phase evaluated in simulation, and a
final phase evaluated in three physical obstacle courses.
The qualifying phase took place before the ICRA 2025
conference using the BARN dataset [5] (with the recent
addition of DynaBARN [6]), which is composed of 300
obstacle courses in Gazebo simulation randomly generated
by cellular automata. The top eight teams from the simulation
phase were then invited to compete in three different physical
obstacle courses set up by the organizers at ICRA 2025 in the
GWCC Atlanta conference center. A physical DynaBARN
arena has been introduced for the first time, with other
rule changes to encourage more robust navigation in highly
constrained spaces.

In this article, we report on the simulation qualifier and
physical finals of The forth BARN Challenge at ICRA 2025,
present the approaches used by the top three teams, discuss
lessons learned from the challenge compared against the
first, second, and third BARN Challenge at ICRA 2022,
2023, and 2024, and point out future research directions
to solve the problem of autonomous ground navigation in
highly constrained spaces.

II. SIMULATION QUALIFIER

The simulation qualifier of The forth BARN Challenge
started on January 1st, 2025. The qualifier used the BARN
dataset [5], which consists of 300 5m × 5m obstacle en-
vironments randomly generated by cellular automata (see
examples in Fig. 1), each with a predefined start and goal.
These obstacle environments range from relatively open
spaces, where the robot barely needs to turn, to highly
dense fields, where the robot needs to squeeze between
obstacles with minimal clearance. The BARN environments
are open to the public, and were intended to be used by
the participating teams to develop their navigation stack.
Another 50 unseen environments, which are not available
to the public, were generated to evaluate the teams’ systems.
A random BARN environment generator was also provided
to the teams so that they could generate their own unseen
test environments.1

1https://github.com/dperille/jackal-map-creation
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Fig. 1: Four example BARN environments in the Gazebo simulator (ordered by ascending relative difficulty level).
.

In addition to the 300 BARN environments, six baseline
approaches were also provided for the participants’ reference,
ranging from classical sampling-based [7] and optimization-
based navigation systems [8], to end-to-end machine learning
methods [9], [10], and hybrid approaches [11]. All baselines
were implementations of different local planners used in
conjunction with Dijkstra’s search as the global planner in
the ROS move base navigation stack [12]. Additionally, the
winning teams’ navigation stacks from the last three competi-
tions were also open sourced [13]. To facilitate participation,
a training pipeline capable of running the standardized Jackal
robot in the Gazebo simulator with ROS Noetic (in Ubuntu
20.04), with the option of being containerized in Docker or
Singularity containers for fast and standardized setup and
evaluation, was also provided.2

A. Rules

Each participating team was required to submit their devel-
oped navigation system as a (collection of) launchable ROS
node(s). The challenge utilized a standardized evaluation
pipeline3 to run each team’s navigation system and compute
a standardized performance metric that considers navigation
success rate (collision or not reaching the goal counts as
failure), actual traversal time, and environment difficulty
(measured by optimal traversal time). Specially, the score
s for navigating each environment i was computed as

si = 1success
i × OTi

clip(ATi, 2OTi, 8OTi)
,

where the indicator function 1success evaluates to 1 if the
robot reaches the navigation goal without any collision, and
evaluates to 0 otherwise. AT denotes the actual traversal
time, while OT denotes the optimal traversal time, as an
indicator of the environment difficulty and measured by the
shortest traversal time assuming the robot always travels at
its maximal speed (2m/s):

OTi =
Path Lengthi

Maximal Speed
.

The Path Length is provided by the BARN dataset based
on Dijkstra’s search from the given start to goal. The clip
function clips AT within 2OT and 8OT in order to assure

2https://github.com/Daffan/ros_jackal
3https://github.com/Daffan/nav-competition-icra2022

navigating extremely quickly or slowly in easy or difficult
environments respectively won’t disproportionally scale the
score. Notice that the lower bound 2OT was reduced from the
previous 4OT used in the first two challenges, considering the
performance upper bound, 0.25, has been closely approached
by multiple teams. Starting from the third BARN Challenge,
the upper bound has been increased to 0.5 to encourage faster
navigation speed. The overall score of each team is the score
averaged over all 50 unseen test BARN environments, with
10 trials in each environment. Higher scores indicate better
navigation performance. The six baselines score between
0.1656 and 0.4354 [14].

B. Results

The simulation qualifier started on January 1st, 2025 and
lasted through a soft submission deadline (April 1st, 2025)
and a hard submission deadline (May 1st, 2025). Submitting
by the soft deadline will guarantee an invitation to the final
physical competition given good navigation performance in
simulation and leave sufficient time for invited participants
to make travel arrangements to Atlanta. The hard deadline is
to encourage broader participation, but final physical com-
petition eligibility will depend on the available capacity and
travel arrangement made beforehand. In total, nine teams,
four from North America, four from Asia, and one from
Europe, submitted their navigation systems. The performance
of each submission was evaluated by the standard evaluation
pipeline. The results are shown in Table I with the baselines
shown in the fourth column as a reference. For The forth
BARN Challenge, we also evaluate the navigation systems in
the DynaBARN dataset with the results shown in parenthesis
in Table I, but the DynaBARN results are not considered in
the final scoring and ranking.

The top two simulation teams, FSMT, an individual
participant, and RobotiXX from George Mason University
(GMU) outperformed all last year’s winning teams (LiCS-
KI, MLDA EEE, and AIMS). However, there is still a gap
between the performance upper bound (0.5) and the top
performance (0.4878).

The top eight teams were invited to the physical finals
at ICRA 2025, of which only four—RobotiXX from GMU,
USA, EW-Glab from Ewha Womans University, Korea,
Robotics and Remote Sensing Lab (RRSL) from Michigan
Technological University (MTU), USA, and Autonomous
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TABLE I: Simulation Results.

Rank. Team Score Baseline

1 FSMT 0.4878 (0.0000)
2 RobotiXX 0.4873 (0.1042)
3 EW-Glab 0.4736 (0.0000)
4 LiCS-KI 0.4611 (0.1125)
5 MDP-DWA 0.4525 (0.0000)
6 MLDA-NTU 0.4510 (0.0201) LfLH [10], e2e [9]
7 RRSL 0.3558 (0.0001)

8 UVA AMR 0.3475 (0.0000)
APPLR-DWA [11],

E-Band [8],
(Fast & Default) DWA [7]

9 Armans Team NA (NA)

Mobile Robotics Lab (AMR) from The University of Vir-
ginia, USA—could attend.

III. PHYSICAL FINALS

The physical finals took place at ICRA 2025 in the GWCC
Atlanta conference center on May 21st and May 22nd, 2025
(Fig. 2). Two physical Jackal robots with the same sensors
and actuators were provided by the competition sponsor,
Clearpath Robotics.

Fig. 2: Final physical competition participants, sponsor
(Clearpath Robotics), and organizers at The forth BARN
Challenge in Atlanta, GA, USA.

A. Setup

Physical obstacle courses were set up using 225 cardboard
boxes in the conference center. The organizers used the
same guidelines to set up three obstacle courses as in
the first three BARN challenges, i.e., all courses aimed at
testing a navigation system’s local planning and therefore
had an obvious passage but with minimal clearance (a few
centimeters around the robot) when traversing this passage.

This year, however, dynamic obstacles were added at the
end of the static obstacle course to further test the robustness
of planning systems. A set of (6-10) randomly moving
iRobot Creates were placed in an enclosed area through
which the Jackal had to maneuver through. The Creates had
a 2 foot cylinder placed on top to allow the Jackal’s Hokuyo
LiDAR to sense them (Fig. 2). Each Roomba was 0.33 m in
diameter and moved at a maximum linear speed of 0.5 m/s
with a combination of behaviors such as spiraling outwards,
following walls, and bouncing off each other.

B. Rules

In order to discourage onsite system fine-tuning to fit the
navigation stack specifically to one obstacle course and to
accommodate the newly introduced DynaBARN arena, the
organizers modified the physical competition rules compared
to previous years’, which were also adjusted throughout
the competition after discussions with and consensus of all
participating teams.

Each team has five minutes to set up their navigation
systems after they received the robot without accessing each
obstacle course. Different than previous years, in the first
obstacle course, after the 5-minute setup time, each team
directly ran five timed trials one after another without fine-
tuning. While only one team, RRSL, was able to finish
trials without any fine-tuning for the first obstacle course,
all other teams failed to do so. Therefore, starting from
the second obstacle course, after the 5-minute setup, each
team had a “cold trial” that required the team to navigate
through the obstacle course without any fine-tuning. If the
cold trial succeeded, it counted towards a bonus successful
trial. This rewarded teams that could run their navigation
stacks without any fine-tuning. After the cold trial, each team
had the opportunity to run five timed trials (after notifying the
organizers to be timed) within a 20-minute period, similar to
the previous years. In each obstacle course, the fastest three
out of the five timed trials were counted, and the team that
had the most successful trials would be the winner. In the
case of a tie, the team with the fastest average traversal time
would be declared the winner.

Different than previous years, a trial would be successful
if the Jackal could maneuver through the static obstacle
course without any “hard collisions”. A collision would be
considered “hard” if it caused a cardboard box to move from
its original position, but not if the Jackal simply grazed a
cardboard box without causing it to move. The traversal time
for the static obstacle course would be recorded and used for
tie-breaking.

After each static obstacle course, the Jackal would enter
the physical DynaBARN arena. Collisions with dynamic
obstacles would not be penalized, but clear dynamic obstacle
avoidance behavior (such as stopping, reversing, or circum-
venting) was rewarded by a 5% decrease in traversal time
of the static obstacle course to encourage robust obstacle
avoidance behavior when facing moving obstacles.



TABLE II: Physical Results.

Rank. Team Success/Total Average Time Course 1 Course 2 Course 3

1 RRSL 7/9(+2) 43/56/105 49/49/46(49)/43/41(43) 59/51/X/X/59(62)/X X/X/X/X/105/X
2 RobotiXX 3/9(+2) NA/83/151 X/X/X/X/X X/70/X/X/X/95 X/X/X/X/151(159)
3 UVA AMR 1/9(+2) NA/57/NA X/X/X/X/X X/X/57/X/X/X X/X/X/X/X/X
4 EW-Glab 1/9(+2) NA/92/NA X/X/X/X/X X/92(97)/X/X/X/X X/X/X/X/X/X

C. Results

The four teams’ navigation performance is shown in Table
II. The detailed results of all five timed trials (in seconds,
only the top three were counted in the final score including
the extra cold trial) are listed in the last three columns of
Table II, where “X” indicates failure. If a trial was given the
dynamic obstacle avoidance reward the raw time is shown
in brackets and the adjusted time is shown outside. The (+2)
in the total runs indicate the two extra cold trials present in
courses two and three.

The winner, RRSL, successfully and quickly finished all
five back-to-back trials in the first course and outperformed
the other teams, while grazing obstacles a few times without
incurring any hard collision. However, they faced difficulty
in the second course and the third most difficult one. The
runner-up, RobotiXX, went through the second and third
obstacle courses twice and once respectively without any
hard or soft collision. UVA AMR was able to successfully
finish a timed trial in the second course but struggled with
all other trials, possibly due to a bug caused by the sensor’s
input. EW-Glab was also only able to successfully finish a
timed trial in the second course, possibly due to sensor-level
noise and sparse sampling in their planning algorithm, which
made it difficult for the robot to perceive narrow gaps and
plan safe trajectories.

As a result, RRSL won the competition by the most
successful trials (7/9); RobotiXX came in second place
with the second most successful trials (3/9); and the tie
between UVA AMR and EW-Glab was broken by the average
traversal time (57s vs. 92s).

IV. TOP THREE TEAMS AND APPROACHES

In this section, we report the approaches used by the three
winning teams.

A. RRSL (MTU)

Robotics and Remote Sensing Lab (RRSL) proposed a
fuzzy-based navigation algorithm termed as the Search-
Smooth-Safeguard FISVFH (S3-FISVFH) [15]. The back-
bone of the proposed navigation framework is the Fuzzy
Inference System Vector Field Histogram (FISVFH) algo-
rithm [16]. FISVFH [16] integrates a Fuzzy Inference System
(FIS) with the VFH algorithm [17], which is a real-time nav-
igation algorithm for mobile wheeled robots. A FIS employs
human-like reasoning to manage uncertainty and make de-
cisions from imprecise data. This combination leverages the
VFH’s ability to make real-time path corrections using sensor
data, while the FIS effectively handles uncertainties such as

Fig. 3: Optimized MFs for the robot’s linear velocity con-
troller after tuning the FISVFH [16] algorithm

sensor noise and environmental disturbances. The FISVFH
algorithm comprises two FIS controllers: one generates the
robot’s linear velocity using front-facing LiDAR data, while
the other determines its angular velocity based on the robot’s
current heading and the direction toward the goal.

S3-FISVFH [15] was developed in two main stages. First,
the FISVFH controller was tuned to optimize its fuzzy infer-
ence system parameters. In the second stage, enhancements
were introduced to address key limitations identified in the
original FISVFH approach.

1) FISVFH Tuning Procedure: A FIS controller is
defined by five key parameters: the number of membership
functions (MFs), the type of MFs, the range of each MF,
and the precise shape and position of each MF. The original
FISVFH [16] relied on heuristic, intuition-driven selection of
these parameters. To improve consistency and performance,
a structured two-stage framework was developed to opti-
mize all five parameters systematically. In the first stage,
a Design of Experiments (DoE) approach was employed to
determine the optimal high-level structure statistically [18].
This process focused on the first three parameters, analyzing
various configurations for the number, type, and operational
range of the MFs. The second stage focused on data-driven
optimization of the shape and position of the MFs using
an optimization-based planner, the Bézier-based Trajectory
Planner (BTP) [19] as a benchmark. Fig. 3 shows the tuned
MFs of the robot’s linear velocity. Although the Tuned
FISVFH performed well overall, it remained susceptible to
certain failure scenarios, including getting trapped, exhibiting
oscillatory behavior, and failing to stop when faced with
imminent collision scenarios.



Fig. 4: The S3-FISVFH algorithm uses the Search compo-
nent to evaluate the possible path to avoid traps.

2) The S3-FISVFH Enhancement: The S3-FISVFH
algorithm integrates three critical components, Search,
Smooth, and Safeguard, on top of the tuned controller
to address the previously mentioned limitations of Tuned
FISVFH:

• Search: A lookahead search mechanism uses a custom
version of A* algorithm [20] to prevent the robot from
getting stuck in traps. As illustrated in Fig. 4, a purely
reactive planner might select trajectory T1, as it is
most aligned with the target goal. However, this path
leads directly into a trap (T4). The Search component
simulates trajectories beyond the limited sensor horizon,
allowing it to foresee this trap. It evaluates alternative
paths and identifies that trajectory T2, while initially
deviating from the goal, leads to a viable path (T3).

• Smooth: A temporal smoothing filter is applied to
mitigate the oscillatory behavior in Tuned FISVFH
due to rapid changes in the robot’s environment. This
component produces more stable turning and continuous
motion by using a weighted average of the robot’s
current and previous headings.

• Safeguard: A fundamental limitation of the original
FISVFH is its inability to issue a stop or reverse
command, even for imminent collisions. To address this,
the Safeguard protocol introduces a “Safety Bubble” as
illustrated by the shaded red sector in front of the robot
in Fig. 4. If an obstacle is detected in this zone, this
component overrides the FIS, stops, and reverses the
robot.

B. RobotiXX (GMU)

The RobotiXX team from GMU introduced a novel Decre-
mental Dynamics Planning (DDP) paradigm [21], which
dynamically incorporates dynamic constraints throughout
the entire planning framework. This approach employs a

Fig. 5: Contrasting the traditional global and local planning
paradigm (top), where either full (green) or zero (white)
robot dynamics is considered, DDP starts with high fidelity
dynamics in the early part of trajectory rollout and gradually
decreases dynamics fidelity for computation efficiency (bot-
tom).

progressive fidelity reduction strategy that balances compu-
tational efficiency with modeling accuracy.

Specifically, DDP starts with high-fidelity dynamics mod-
eling in the early trajectory rollout stages, capturing essential
dynamic properties of the robot, e.g., velocity, acceleration,
and turning radius constraints, and ensuring that the robot can
precisely navigate complex environments and avoid highly
constrained obstacles. As the trajectory rollout progresses,
the fidelity of dynamic modeling gradually decreases by
simplifying the model to improve computational efficiency
while ensuring that dynamic feasibility is not significantly
compromised (Fig. 5). In the implementation, DDP balances
dynamics fidelity and onboard computation by adjusting both
(1) the dynamics integration interval and (2) the number
of robot state points for state-space collision checking at
each time step. This approach augments the SE(2) robot
state (xt, yt, ψt) to (xt, yt, ψt, x
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where T denotes the number of time steps, and p is a
hyperparameter controlling the rate of change in the in-
tegration interval. At each integration interval, only the
subset of collision points defined by {cit}ni=1 are evaluated.
The number of points checked along the trajectory (Nt) is
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Fig. 6: RobotiXX DDP-based navigation system.

gradually reduced using:

Nt = n ·
(
1−

(
t

T

)p)
. (2)

Only state points i, for which cit = 1, are calculated and
collision-checked at time t to achieve decremental dynamics
and computational savings.

The DDP-based navigation system allows the robot to
operate in four distinct modes: high-speed, low-speed, brak-
ing, and recovery (including rotation and reverse). The robot
begins in high-speed mode and shifts to low-speed mode
when its linear velocity remains below a threshold for a set
duration, reducing the maximum linear and angular velocity
limits for safe obstacle avoidance. If the linear velocity stays
too low, the robot brakes before entering recovery behavior.
Similarly, when the robot’s speed exceeds a specified thresh-
old, it transitions from recovery to low-speed mode and then
back to high-speed mode if necessary. The navigation system
framework is illustrated in Fig. 6. For each planning iteration,
the robot randomly samples linear and angular velocities
with added noise. During trajectory rollout, the system em-
ploys these velocity samples and robot dynamics parameters
to predict potential future trajectories and evaluates them
against a cost function. The cost function considers multiple
factors: proximity to the goal, distance from obstacles, total
path length, trajectory smoothness, and orientation relative to
the goal. After evaluating all trajectories, only the N = 10
collision-free trajectories with the lowest cost are retained,
and robot actions are generated using a weighted average of
their linear and angular velocities based on trajectory cost.

C. UVA AMR (UVA)

The UVA AMR’s implementation builds on the lab’s prior
work [22], [23] and consists of four main elements: 1) a
static obstacle avoidance planner, 2) a control strategy, 3)
a dynamic obstacle detection approach, and 4) a dynamic
obstacle avoidance method.

1) Static Obstacle Avoidance—Planning: For planing
purposes, the pipeline leverages a safe-corridor-based motion
planner [24] to generate dynamically feasible trajectories that
a low-level controller can track. Consider a robot tasked
with reaching a final goal xg in a cluttered environment, as
illustrated in Fig. 7. The receding horizon planning pipeline
begins by computing a 0-order global path (purple line) from

Fig. 7: Illustration of UVA AMR’s static obstacle avoidance
strategy.

the current robot position xt to the goal xg using a graph-
based search method, such as Jump Point Search (JPS) [25].

To avoid frequent failures in the back-end trajectory op-
timizer when planning over excessively long horizons, the
global path is truncated by walking along the JPS path
by a fixed user-defined length to determine an intermediate
goal x̂g . The Fast Iterative Region Inflation (FIRI) algorithm
[26] is then used to generate corridor C of intersecting
convex polytopes along the path from the robot position
xt to goal xg . This safe corridor, along with the robot’s
current state xt and intermediate goal x̂g , is provided to the
back-end optimizer, which solves for a smooth, dynamically
feasible trajectory reference r(ξ) parameterized by arc length
ξ (orange curve in Fig. 7).

For mapping, UVA AMR used the slam toolbox4 ROS
package. Local obstacle information is captured using a
sliding window costmap centered on the robot. To account
for the robot’s footprint, AMR dilated the obstacles in the
costmap to ensure safe clearance during planning. In practice,
the dilation radius was found to be one of the most critical
parameters in the physical competition—too small and the
robot risks collision; too large and planning becomes overly
conservative, leading to deadlocks.

2) Static Obstacle Avoidance—Control: To reliably track
r(·), AMR used a Model Predictive Contour Controller
(MPCC) to generate a receding horizon of control inputs
(black line extending from the robot in Fig. 7). Unlike
traditional time-based trajectory tracking, which often relies
on smooth polynomial curves that limit the robot’s ability
to sustain maximum speed over an entire segment, AMR’s
arc-length parameterized formulation allows the MPCC to
freely modulate acceleration along the reference path r(ξ).
This provides more expressive control and enables faster,
more efficient navigation by removing the need for time-
parameterized polynomial curves.

The MPCC optimizes over acceleration commands to
ensure smooth actuation, which are then integrated into
velocity commands before being sent to the Jackal. To further
improve tracking performance—particularly during aggres-
sive maneuvers like high speed turns—AMR augmented

4https://github.com/SteveMacenski/slam_toolbox
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Fig. 8: Rviz and Gazebo screen captures of dynamic obstacle
detection and backup maneuver.

the MPCC with a Control Lyapunov Function constraint.
This introduces a stabilizing term that actively corrects
tracking deviations, ensuring reliable and safe trajectory
tracking, which is critical for navigating cluttered environ-
ments. Although not implemented during this competition,
the robustness of this approach could be further improved
by incorporating a Control Barrier Function [27] safety filter,
as demonstrated in prior work [23]. In particular, collisions
(e.g., clipping corners) were due to insufficient tuning of the
obstacle padding in the local costmap, underscoring the need
for additional safety enforcement.

3) Dynamic Obstacle Detection: Our methodology for
dynamic obstacle detection relies on two key assumptions:
1) dynamic obstacles used in the competition are circular and
2) their motion is characterized by bounded and consistent
speeds in the short term. The process begins by segmenting
the LiDAR scan into point clusters and identifying dynamic
obstacle candidates that satisfy the circular object assump-
tion. These candidates are then passed to a tracking-by-
detection algorithm, which associates them with previously
identified tracks across consecutive frames [28]. A dynamic
obstacle candidate is classified as a dynamic obstacle only
if it meets the following criteria: (i) consistent and sustained
movement is detected, (ii) size and shape requirements are
within bounds, and (iii) the expected velocity of the candidate
is within bounds. To refine the state of dynamic obstacles,
the system employs a Kalman filter that leverages a constant-
velocity model. This filter predicts each obstacle’s future
position while incorporating new measurements to correct
the estimate. The result is a smoothed trajectory and a stable
velocity estimate for each dynamic obstacle, providing robust
estimation for downstream dynamic obstacle avoidance, even
in the presence of noisy sensor data.

4) Dynamic Obstacle Avoidance: The robot’s primary
response to a predicted collision is to override the MPCC
and publish a zero-velocity command, bringing the robot
to a stop. However, this can result in a critical failure case
where a dynamic obstacle continues along a collision path
with the stationary robot. To address this issue, the robot
employs a more active avoidance strategy by triggering an
evasive backup maneuver until no collision is predicted. The
outcome of this maneuver is shown in Fig. 8. Once the
dynamic obstacle is no longer a collision threat, our approach
validates that the MPCC trajectory is safe and hands control
back to the primary planner, enabling the robot to resume its
mission towards xg .

V. DISCUSSION

We discuss new findings and lessons from The forth
BARN Challenge, not only from the technical perspective,
but also from the competition organization side.

A. Required fine-Tuning for each obstacle course

The organizers and teams decided to change the rules
at the beginning of the physical competition to disallow
teams to fine-tune for each obstacle course and incentivize
reliability of the developed navigation systems in a variety
of deployment scenarios. Unfortunately, such a rule change
turned out to be too soon for the BARN Challenge. Even
RRSL was able to achieve five successful trials without any
fine-tuning in the first obstacle course, the Jackal gently
touched the cardboard boxes without displacing them in two
trials. The RobotiXX, UVA AMR, and EW-Glab teams were
not able to finish one single trial without any hard collision
in the first obstacle course. Such unsatisfactory behavior
motivated the organizers and teams to agree to revert to
the original rules, i.e., allowing fine-tuning to achieve the
three best out of five timed trials within 20 minutes, with
the cold trial as a bonus to reward navigation without fine-
tuning for every environment. Interestingly, not a single team
was able to successfully traverse the more difficult obstacle
courses two and three without any fine-tuning (except RRSL
for course two), all failing to get the bonus successful trial.

This new experience in the forth BARN Challenge reveals
the gap between the existing navigation systems and an ideal
one that can work without requiring human expertise across
different deployment scenarios. Therefore, the organizers
plan to continue using similar incentives to discourage fine-
tuning for future BARN challenges, such as disallowing
any fine-tuning in the first easiest obstacle course and us-
ing the cold trial to reward navigation without fine-tuning.
Researchers are encouraged to develop parameter-free navi-
gation systems, systems whose performances in different en-
viornments are insensitive to different parameterizations, or
autonomous parameter tuning techniques without requiring
human expertise [11], [29]–[33].

B. First year with classical systems across all winning teams

The forth BARN Challenge is the first year, in which
all winning teams adopted classical approaches without any
learning [34], as well as EW-Glab. LiCS-KI from Korea
Advanced Institute of Science and Technology utilized a
learning-based method. One of the team members was
present at the competition in person but unfortunately was
unable to participate due to illness. LiCS-KI’s performance
this year in simulation using reinforcement learning [35]–
[39] was not as good as last year’s using imitation learn-
ing [40]–[45], but with the hope to achieve better sim-to-
real transfer and therefore better real-world performance.
Unfortunately, the system’s performance was not tested in
the physical finals.

Notice LiCS-KI’s Transformer-based method using imita-
tion learning has won last year’s BARN challenge. Learning
method also has the potential to address challenges beyond



geometric obstacle avoidance [10], [46]–[49], such as visual
inputs [35], [36], [50]–[55], off-road conditions [41], [42],
[44], [45], [56]–[66], social contexts [67]–[77], kinodynamic
constraints [78]–[80], or multi-robot navigation [81]–[84].

C. Unsatisfactory dynamic obstacle avoidance

Since most teams did not explicitly optimize their navi-
gation systems for dynamic obstacle avoidance, they did not
achieve good navigation performance in the simulated Dyn-
aBARN enviornments (brackets in Table I). Only RobotiXX
and LiCS-KI were able to achieve a reasonable amount of
dynamic obstacle avoidance behaviors (> 0.1). A few teams
were not able to avoid any dynamic obstacle in DynaBARN.

During the physical competition, due to the poor perfor-
mance in the static obstacle courses, the Jackal did not reach
the dynamic obstacle field at the end in most trials. In a
few trials when Jackal did reach, it did not encounter any
dynamic obstacle on the way to the final goal, therefore not
receiving the 5% time reduction reward on the static traversal
time. In fact, the reduction rewards were only applied five
times for RRSL (three), RobotiXX, and EW-Glab during
the entire physical competition. The organizers will consider
separating the physical DynaBARN environment from the
static obstacle courses in future challenges, i.e., not being
able to finish the static courses won’t affect being able to
navigate the DynaBARN area.

D. One single path through the obstacle course for fairness

In the second physical obstacle course, the organizers
arranged a dense obstacle field in the middle of the traversal
in a way that there were multiple paths to go through it,
e.g., from left, middle, and right. The original intention
of this arrangement was to encourage different navigation
behaviors and test out the navigation systems’ ability to
make a decision when multiple topological path options
exist. However, it turned out that different path options
chosen by different teams would lead to different mapping
results, affecting global planning later in the trials. To be
specific, one path option allowed the robot to perceive certain
obstacles and reveal a dead-end, while taking another option
the robot did not see those critical obstacles and left the dead-
end open. Towards later of the obstacle course, a narrow
passage prompted the robot who took the second option
to reconsider during global planning the earlier open part,
which was actually a dead-end, getting the robot stuck when
turning around to go back to the dead-end. Considering all
path options were feasible, the team who chose the second
option was penalized for reasons that were not related with
poor navigation performance, which was not fair. Therefore,
in future competitions, the organizers will try to maintain
only one single possible path through the entire obstacle
course to avoid complications caused by reasons not related
to navigation and to assure fairness.

VI. FUTURE PLANS

Based on the first four year’s BARN challenges, in the
next BARN challenge in ICRA 2026, the organizers have

the following plans. First, the adoption of the no-tuning
obstacle course one as well as the cold start bonus successful
trials for obstacle courses two and three will be continued
to incentivize navigation systems that do not require fine-
tuning based on human expertise for every different de-
ployment scenario. The allowed fine-tuning time (currently
20 minutes) will be reduced to discourage extensive de-
pendence on manual trial and error. Second, the organizers
will separate the dynamic and static portion of the obsta-
cle course so failing in one won’t affect being evaluated
in another. More interactions with dynamic obstacles will
thus become possible to extensively test existing navigation
systems’ dynamic obstacle avoidance capability. Third, it
will be strictly ensured that there is only one possible path
going through all obstacle courses, therefore preventing the
mapping complications caused by taking different paths and
perceiving different obstacles during the traversal. Lastly,
the organizers will reach out to more potential competition
sponsors to provide financial support for more teams to travel
to the conference to participate the physical finals.
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contours,” IEEE Access, 2024.

[20] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE transactions on
Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[21] Y. Lu, T. Xu, L. Wang, N. Hawes, and X. Xiao, “Decremental dynam-
ics planning for robot navigation,” in 2025 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2025.

[22] N. Mohammad, J. Higgins, and N. Bezzo, “A gp-based robust motion
planning framework for agile autonomous robot navigation and recov-
ery in unknown environments,” in 2024 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2024, pp. 2418–2424.

[23] N. Mohammad and N. Bezzo, “Soft actor-critic-based control
barrier adaptation for robust autonomous navigation in unknown
environments,” 2025. [Online]. Available: https://arxiv.org/abs/2503.
08479

[24] J. Tordesillas and J. P. How, “FASTER: Fast and safe trajectory
planner for navigation in unknown environments,” IEEE Transactions
on Robotics, 2021.

[25] D. Harabor and A. Grastien, “Online graph pruning for pathfinding
on grid maps,” in Proceedings of the Twenty-Fifth AAAI Conference
on Artificial Intelligence, ser. AAAI’11. AAAI Press, 2011, p.
1114–1119.

[26] Q. Wang, Z. Wang, M. Wang, J. Ji, Z. Han, T. Wu, R. Jin, Y. Gao,
C. Xu, and F. Gao, “Fast iterative region inflation for computing large
2-d/3-d convex regions of obstacle-free space,” IEEE Transactions on
Robotics, vol. 41, pp. 3223–3243, 2025.

[27] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in 2019 18th European Control Conference (ECC), 2019, pp. 3420–
3431.

[28] M. S. Darms, P. E. Rybski, C. Baker, and C. Urmson, “Obstacle
detection and tracking for the urban challenge,” IEEE Transactions
on Intelligent Transportation Systems, vol. 10, no. 3, pp. 475–485,
2009.

[29] X. Xiao, B. Liu, G. Warnell, J. Fink, and P. Stone, “Appld: Adaptive
planner parameter learning from demonstration,” IEEE Robotics and
Automation Letters, vol. 5, no. 3, pp. 4541–4547, 2020.

[30] Z. Wang, X. Xiao, B. Liu, G. Warnell, and P. Stone, “Appli: Adaptive
planner parameter learning from interventions,” in 2021 IEEE interna-
tional conference on robotics and automation (ICRA). IEEE, 2021,
pp. 6079–6085.

[31] Z. Wang, X. Xiao, G. Warnell, and P. Stone, “Apple: Adaptive planner
parameter learning from evaluative feedback,” IEEE Robotics and
Automation Letters, vol. 6, no. 4, pp. 7744–7749, 2021.

[32] H. Ma, J. S. Smith, and P. A. Vela, “Navtuner: Learning a scene-
sensitive family of navigation policies,” in 2021 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2021, pp. 492–499.

[33] X. Xiao, Z. Wang, Z. Xu, B. Liu, G. Warnell, G. Dhamankar, A. Nair,
and P. Stone, “Appl: Adaptive planner parameter learning,” Robotics
and Autonomous Systems, vol. 154, p. 104132, 2022.

[34] X. Xiao, B. Liu, G. Warnell, and P. Stone, “Motion planning and

control for mobile robot navigation using machine learning: a survey,”
Autonomous Robots, pp. 1–29, 2022.

[35] G. Kahn, P. Abbeel, and S. Levine, “Badgr: An autonomous self-
supervised learning-based navigation system,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 1312–1319, 2021.

[36] H. Karnan, G. Warnell, X. Xiao, and P. Stone, “Voila: Visual-
observation-only imitation learning for autonomous navigation,” in
2022 International Conference on Robotics and Automation (ICRA).
IEEE, 2022, pp. 2497–2503.

[37] Z. Xu, B. Liu, X. Xiao, A. Nair, and P. Stone, “Benchmarking
reinforcement learning techniques for autonomous navigation,” in
2023 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2023, pp. 9224–9230.

[38] Z. Xu, X. Xiao, G. Warnell, A. Nair, and P. Stone, “Machine
learning methods for local motion planning: A study of end-to-end
vs. parameter learning,” in 2021 IEEE International Symposium on
Safety, Security, and Rescue Robotics (SSRR). IEEE, 2021, pp. 217–
222.

[39] Z. Xu, A. Nair, X. Xiao, and P. Stone, “Learning real-world au-
tonomous navigation by self-supervised environment synthesis,” arXiv
preprint arXiv:2210.04852, 2022.

[40] Y. Pan, C.-A. Cheng, K. Saigol, K. Lee, X. Yan, E. A. Theodorou,
and B. Boots, “Imitation learning for agile autonomous driving,” The
International Journal of Robotics Research, vol. 39, no. 2-3, pp. 286–
302, 2020.

[41] X. Xiao, J. Biswas, and P. Stone, “Learning inverse kinodynamics for
accurate high-speed off-road navigation on unstructured terrain,” IEEE
Robotics and Automation Letters, vol. 6, no. 3, pp. 6054–6060, 2021.

[42] H. Karnan, K. S. Sikand, P. Atreya, S. Rabiee, X. Xiao, G. Warnell,
P. Stone, and J. Biswas, “Vi-ikd: High-speed accurate off-road naviga-
tion using learned visual-inertial inverse kinodynamics,” in To Appear
in 2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2022.

[43] P. Atreya, H. Karnan, K. S. Sikand, X. Xiao, G. Warnell, S. Rabiee,
P. Stone, and J. Biswas, “High-speed accurate robot control using
learned forward kinodynamics and non-linear least squares opti-
mization,” in 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2022.

[44] A. Datar, C. Pan, M. Nazeri, and X. Xiao, “Toward wheeled mobility
on vertically challenging terrain: Platforms, datasets, and algorithms,”
in 2024 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2024.

[45] A. Datar, C. Pan, and X. Xiao, “Learning to model and plan for
wheeled mobility on vertically challenging terrain,” IEEE Robotics
and Automation Letters, 2024.

[46] X. Xiao, B. Liu, G. Warnell, and P. Stone, “Toward agile maneuvers
in highly constrained spaces: Learning from hallucination,” IEEE
Robotics and Automation Letters, vol. 6, no. 2, pp. 1503–1510, 2021.

[47] X. Xiao, B. Liu, and P. Stone, “Agile robot navigation through hallu-
cinated learning and sober deployment,” in 2021 IEEE international
conference on robotics and automation (ICRA). IEEE, 2021, pp.
7316–7322.

[48] B. Liu, X. Xiao, and P. Stone, “A lifelong learning approach to mobile
robot navigation,” IEEE Robotics and Automation Letters, vol. 6, no. 2,
pp. 1090–1096, 2021.

[49] S. A. Ghani, Z. Wang, P. Stone, and X. Xiao, “Dyna-lflh: Learning
agile navigation in dynamic environments from learned hallucination,”
in 2025 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2025.

[50] D. Song, J. Liang, X. Xiao, and D. Manocha, “Vl-tgs: Trajectory
generation and selection using vision language models in mapless
outdoor environments,” IEEE Robotics and Automation Letters, 2025.

[51] J. Liang, K. Weerakoon, D. Song, S. Kirubaharan, X. Xiao, and
D. Manocha, “Mosu: Autonomous long-range robot navigation with
multi-modal scene understanding,” in 19th International Symposium
on Experimental Robotics (ISER), 2025.

[52] A. Payandeh, D. Song, M. Nazeri, J. Liang, P. Mukherjee, A. H. Raj,
Y. Kong, D. Manocha, and X. Xiao, “Social-llava: Enhancing robot
navigation through human-language reasoning in social spaces,” in
2025 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2025.

[53] Y. Kong, D. Song, J. Liang, D. Manocha, Z. Yao, and X. Xiao,
“Autospatial: Visual-language reasoning for social robot navigation
through efficient spatial reasoning learning,” in 2025 IEEE/RSJ Inter-

http://wiki.ros.org/move_base
https://cs.gmu.edu/~xiao/Research/BARN_Challenge/BARN_Challenge24.html
https://cs.gmu.edu/~xiao/Research/BARN_Challenge/BARN_Challenge24.html
https://cs.gmu.edu/~xiao/Research/BARN_Challenge/BARN_Challenge25.html
https://cs.gmu.edu/~xiao/Research/BARN_Challenge/BARN_Challenge25.html
https://arxiv.org/abs/2503.08479
https://arxiv.org/abs/2503.08479


national Conference on Intelligent Robots and Systems (IROS). IEEE,
2025.

[54] M. Nazeri, J. Wang, A. Payandeh, and X. Xiao, “Vanp: Learning where
to see for navigation with self-supervised vision-action pre-training,”
in 2024 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2024.

[55] K. S. Sikand, S. Rabiee, A. Uccello, X. Xiao, G. Warnell, and
J. Biswas, “Visual representation learning for preference-aware path
planning,” in 2022 International Conference on Robotics and Automa-
tion (ICRA). IEEE, 2022, pp. 11 303–11 309.

[56] T. Xu, C. Pan, and X. Xiao, “Vertiselector: Automatic curriculum
learning for wheeled mobility on vertically challenging terrain,” in
2025 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2025.

[57] A. Datar, A. Pokhrel, M. Nazeri, M. B. Rao, C. Pan, Y. Zhang, A. Har-
rison, M. Wigness, P. R. Osteen, J. Ye, and X. Xiao, “M2p2: A multi-
modal passive perception dataset for off-road mobility in extreme
low-light conditions,” in 2025 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2025.

[58] M. Gupta and X. Xiao, “T-cbf: Traversability-based control barrier
function to navigate vertically challenging terrain,” in 2025 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2025.

[59] A. Pokhrel, A. Datar, and X. Xiao, “Dom, cars don’t fly!–or do they?
in-air vehicle maneuver for high-speed off-road navigation,” in 2025
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2025.

[60] X. Cai, J. Queeney, T. Xu, A. Datar, C. Pan, M. Miller, A. Flather, P. R.
Osteen, N. Roy, X. Xiao et al., “Pietra: Physics-informed evidential
learning for traversing out-of-distribution terrain,” IEEE Robotics and
Automation Letters, 2025.

[61] A. Datar, C. Pan, M. Nazeri, A. Pokhrel, and X. Xiao, “Terrain-
attentive learning for efficient 6-dof kinodynamic modeling on ver-
tically challenging terrain,” arXiv preprint arXiv:2403.16419, 2024.

[62] M. Nazeri, A. Datar, A. Pokhrel, C. Pan, G. Warnell, and X. Xiao,
“Verticoder: Self-supervised kinodynamic representation learning on
vertically challenging terrain,” in 2024 ieee international conference
on robotics and automation (ICRA). IEEE, 2024.

[63] T. Xu, C. Pan, and X. Xiao, “Reinforcement learning for wheeled
mobility on vertically challenging terrain,” in 2024 IEEE International
Symposium on Safety Security Rescue Robotics (SSRR). IEEE, 2024,
pp. 125–130.

[64] J. Liang, A. Payandeh, D. Song, X. Xiao, and D. Manocha, “Dtg:
Diffusion-based trajectory generation for mapless global navigation,”
in 2024 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2024.

[65] J. Liang, P. Gao, X. Xiao, A. J. Sathyamoorthy, M. Elnoor, M. Lin, and
D. Manocha, “Mtg: Mapless trajectory generator with traversability
coverage for outdoor navigation,” in 2024 IEEE International Confer-
ence on Robotics and Automation (ICRA). IEEE, 2024.

[66] A. Pokhrel, M. Nazeri, A. Datar, and X. Xiao, “Cahsor: Competence-
aware high-speed off-road ground navigation in se(3),” IEEE Robotics
and Automation Letters, 2024.

[67] A. H. Raj, Z. Hu, H. Karnan, R. Chandra, A. Payandeh, L. Mao,
P. Stone, J. Biswas, and X. Xiao, “Rethinking social robot navigation:
Leveraging the best of two worlds,” in 2024 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2024.

[68] D. Song, J. Liang, A. Payandeh, A. H. Raj, X. Xiao, and D. Manocha,
“Vlm-social-nav: Socially aware robot navigation through scoring us-
ing vision-language models,” IEEE Robotics and Automation Letters,
2024.

[69] B. Panigrahi, A. H. Raj, M. Nazeri, and X. Xiao, “A study on learning
social robot navigation with multimodal perception,” arXiv preprint
arXiv:2309.12568, 2023.

[70] R. Mirsky, X. Xiao, J. Hart, and P. Stone, “Conflict avoidance in
social navigation—a survey,” ACM Transactions on Human-Robot
Interaction, vol. 13, no. 1, pp. 1–36, 2024.

[71] A. Francis, C. Pérez-d’Arpino, C. Li, F. Xia, A. Alahi, R. Alami,
A. Bera, A. Biswas, J. Biswas, R. Chandra et al., “Principles and
guidelines for evaluating social robot navigation algorithms,” ACM
Transactions on Human-Robot Interaction, 2024.

[72] C. Mavrogiannis, F. Baldini, A. Wang, D. Zhao, P. Trautman, A. Stein-
feld, and J. Oh, “Core challenges of social robot navigation: A survey,”
ACM Transactions on Human-Robot Interaction, vol. 12, no. 3, pp. 1–
39, 2023.

[73] H. Karnan, A. Nair, X. Xiao, G. Warnell, S. Pirk, A. Toshev, J. Hart,
J. Biswas, and P. Stone, “Socially compliant navigation dataset (scand):
A large-scale dataset of demonstrations for social navigation,” IEEE
Robotics and Automation Letters, vol. 7, no. 4, pp. 11 807–11 814,
2022.

[74] D. M. Nguyen, M. Nazeri, A. Payandeh, A. Datar, and X. Xiao, “To-
ward human-like social robot navigation: A large-scale, multi-modal,
social human navigation dataset,” in 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2023,
pp. 7442–7447.

[75] X. Xiao, T. Zhang, K. M. Choromanski, T.-W. E. Lee, A. Francis,
J. Varley, S. Tu, S. Singh, P. Xu, F. Xia, S. M. Persson, L. Takayama,
R. Frostig, J. Tan, C. Parada, and V. Sindhwani, “Learning model pre-
dictive controllers with real-time attention for real-world navigation,”
in Conference on robot learning. PMLR, 2022.

[76] J. Hart, R. Mirsky, X. Xiao, S. Tejeda, B. Mahajan, J. Goo, K. Baldauf,
S. Owen, and P. Stone, “Using human-inspired signals to disam-
biguate navigational intentions,” in International Conference on Social
Robotics. Springer, 2020, pp. 320–331.

[77] S. Pirk, E. Lee, X. Xiao, L. Takayama, A. Francis, and A. Toshev,
“A protocol for validating social navigation policies,” arXiv preprint
arXiv:2204.05443, 2022.

[78] D. Das, Y. Lu, E. Plaku, and X. Xiao, “Motion memory: Leveraging
past experiences to accelerate future motion planning,” in 2024 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2024.

[79] Y. Lu and E. Plaku, “Leveraging single-goal predictions to improve
the efficiency of multi-goal motion planning with dynamics,” in 2023
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2023, pp. 850–857.

[80] H.-D. Bui, Y. Lu, and E. Plaku, “Improving the efficiency of sampling-
based motion planners via runtime predictions for motion-planning
problems with dynamics,” in 2022 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2022, pp. 4486–
4491.

[81] P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards
optimally decentralized multi-robot collision avoidance via deep re-
inforcement learning,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2018, pp. 6252–6259.

[82] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-
communicating multiagent collision avoidance with deep reinforce-
ment learning,” in 2017 IEEE international conference on robotics
and automation (ICRA). IEEE, 2017, pp. 285–292.

[83] Y. Lu, D. Das, E. Plaku, and X. Xiao, “Multi-goal motion memory,”
arXiv preprint arXiv:2407.11399, 2024.

[84] J.-S. Park, X. Xiao, G. Warnell, H. Yedidsion, and P. Stone, “Learn-
ing perceptual hallucination for multi-robot navigation in narrow
hallways,” in 2023 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2023, pp. 10 033–10 039.


	The forth BARN Challenge Overview
	Simulation Qualifier
	Rules
	Results

	Physical Finals
	Setup
	Rules
	Results

	Top Three Teams and Approaches
	RRSL (MTU)
	FISVFH Tuning Procedure
	The S3-FISVFH Enhancement

	RobotiXX (GMU)
	UVA AMR (UVA)
	Static Obstacle Avoidance—Planning
	Static Obstacle Avoidance—Control
	Dynamic Obstacle Detection
	Dynamic Obstacle Avoidance


	Discussion
	Required fine-Tuning for each obstacle course
	First year with classical systems across all winning teams
	Unsatisfactory dynamic obstacle avoidance
	One single path through the obstacle course for fairness

	Future Plans
	References

