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Abstract—While the workspace of traditional ground vehicles
is usually assumed to be in a 2D plane, i.e., SE(2), such
an assumption may not hold when they drive at high speeds
on unstructured off-road terrain: High-speed sharp turns on
high-friction surfaces may lead to vehicle rollover; Turning
aggressively on loose gravel or grass may violate the non-
holonomic constraint and cause significant lateral sliding; Driving
quickly on rugged terrain will produce extensive vibration along
the vertical axis. Therefore, most offroad vehicles are currently
limited to drive only at low speeds to assure vehicle stability and
safety. In this work, we aim at empowering high-speed off-road
vehicles with competence awareness in SE(3) so that they can
reason about the consequences of taking aggressive maneuvers on
different terrain with a 6-DoF forward kinodynamic model. The
model is learned from visual and inertial Terrain Representation
for Off-road Navigation (TRON) using multimodal, self-supervised
vehicle-terrain interactions. We demonstrate the efficacy of our
Competence-Aware High-Speed Off-Road (CAHSOR) navigation
approach on a physical ground robot in both an autonomous
navigation and a human shared-control setup and show that
CAHSOR can efficiently reduce vehicle instability by 62% while
only compromising 8.6% average speed with the help of TRON.

I. INTRODUCTION

Autonomous mobile robot navigation has been a research
topic in the robotics community for decades [10, 33]. Being
equipped with perception, planning, and control techniques,
different types of ground robots, e.g., differential-drive or
Ackermann-steering, are able to efficiently move toward their
goals in their 2D workspaces considering their 3-DoF motion
models (x, y, and yaw) without colliding with obstacles,
mostly in structured and homogeneous environments [53, 55].

Bringing those robots into the unstructured real world,
researchers have also investigated off-road navigation since
the DARPA Grand Challenge [37] and LAGR (Learning
Applied to Ground Vehicles) Program [14]. While significant
research effort on off-road navigation focuses on the percep-
tion side [24, 46, 2, 23], researchers have also investigated off-
road mobility, including inverse [16, 48] and forward [1, 22]
kinodynamics, wheel slip modeling [35, 34], and end-to-end
learning [29, 39]. Most off-road robots drive at slow speeds to
assure vehicle stability and safety [7, 8]. Even when aiming at
driving fast, they still assume a simplified 2D workspace and
3-DoF model in SE(2) despite the highly likely disturbances
from the off-road terrain on other dimensions of the state space
(e.g., drift along y, roll around x, or bumpiness along z).
These realistic kinodynamic effects may be tolerable in some
cases, but may lead to catastrophic consequences in others
with increasing speed on unstructured terrain (Fig. 1).

Fig. 1. Challenges of High-Speed Off-Road Ground Navigation in SE(3).

To enable safe and robust off-road navigation, high-speed
ground robots need to be competence-aware, i.e., knowing
what is the consequence of taking an aggressive maneuver
on different off-road terrain. For example, a sharp turn on
high-friction pavement may lead to vehicle rollover (Fig. 1
top); Blasting through rugged surfaces can generate extensive
vertical vibrations and damage onboard components (Fig. 1
bottom left); Aggressive swerving on loose grass or gravel
will cause the vehicle to slide sideways and risk collision or
falling off a cliff (Fig. 1 bottom right).

To this end, we propose a Competence-Aware High-Speed
Off-Road (CAHSOR) ground navigation approach based on a
6-DoF forward kinodynamic model in SE(3). The model is
learned as a downstream task of a new Terrain Representation
for Off-road Navigation (TRON) approach with multimodal,
self-supervised learning using viewpoint-invariant visual ter-
rain patches and underlying Inertia Measurement Unit (IMU)
responses during vehicle-terrain interactions. CAHSOR learns
to predict potential next states according to different candidate
actions and the current visual and/or inertial terrain representa-
tion to make competence-aware decisions in order to maximize
speed while satisfying 6-DoF vehicle stability constraints in
SE(3), e.g., without excessive sliding and rolling motions or
bumpy vibrations. Our contributions can be summarized as:

• a TRON approach with multimodal self supervision that



allows onboard visual and inertial observations to aug-
ment each other and maximizes the information embed-
ded in the representation of each perceptual modality;

• a comprehensive study of various end-to-end and repre-
sentation learning techniques with different modalities for
different off-road kinodynamic modeling tasks;

• a CAHSOR framework for high-speed off-road vehicles to
take aggressive maneuvers with stability and safety; and

• a set of real-world, off-road robot experiments to demon-
strate the effectiveness of CAHSOR based on TRON in both
an autonomous navigation and a human shared-control
setup, exhibiting 62% vehicle instability reduction while
only compromising 8.6% average speed.

II. RELATED WORK

We review related robot navigation research focusing on
off-road conditions and using machine learning approaches.

A. Off-Road Navigation

Since the DARPA Urban Challenge [37] and LAGR Pro-
gram [14], robotics researchers have investigated autonomous
navigation techniques for off-road conditions. Going beyond
the simple delineation of the workspace into obstacles and free
spaces, the first challenge comes from robot perception, e.g.,
identifying semantic information such as pavement, gravel,
grass, pebble, and mud. Terrain classification methods per-
ceive the underlying terrain and make navigation decisions
tailored to the terrain class [2, 3, 4], while terrain segmenta-
tion approaches use terrain semantics and build traversability
costmaps to inform subsequent planning [24, 46, 23, 18, 9, 41,
40]. Furthermore, high-speed off-road navigation has been in-
vestigated by robotics researchers from the mobility side. End-
to-end learning approaches allow aggressive off-road driving
in a closed circuit [29]. More structured approaches have been
taken to learn inverse [16, 48] and forward [1, 22] kinodynam-
ics and wheel slip models [35, 34]. In most aforementioned
approaches, ground robots are treated as vehicles moving in
a 2D workspace with 3 DoFs (x, y, and yaw). Recently,
researchers have also started looking into autonomous off-road
crawling, in which vehicles slowly drive on non-flat, extremely
rugged rocks and boulders [7, 8], requiring the vehicle state
space to be expanded into SE(3). Our CAHSOR also operates
in SE(3), but our 6-DoF forward kinodynamic model aims at
confidently navigating ground robots at the maximum possible
speed on various off-road terrain while maintaining stability
on other state dimensions, e.g., drift along y, roll around x,
or bumpiness along z, which are often ignored by traditional
ground robot models.

B. Machine Learning for Navigation

Recently, machine learning approaches have been widely
adopted to enable autonomous mobile robot navigation [51].
Those learning methods enable navigation behaviors in a
data-driven manner without the need of manually designing
systems and components which tend to fail to capture the
complexities and intricacies in the real world. In particular,
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Fig. 2. Overview of the Competence-Aware High-Speed Off-Road (CAHSOR)
Ground Navigation (Side and Top View).

researchers have used machine learning to learn end-to-end
systems [17, 29, 32, 5], local planners [58, 21, 11, 43, 49, 50],
planner parameterization [47, 42, 44, 56, 52, 57], kinodynamic
models [16, 48, 1, 26], and cost functions [54, 38, 20, 19, 36,
6], for tasks like highly-constrained [53, 55, 43, 49, 50, 31, 27],
social [30, 54, 15, 28, 12, 20, 5, 19, 13, 25], and off-road
navigation [29, 16, 48, 1]. Considering the complexity of un-
structured off-road terrain and their intricate effects on vehicle
kinodynamics at high speeds, we also adopt a data-driven
method for CAHSOR to learn a forward kinodynamic function
conditioned on viewpoint-invariant visual and underlying iner-
tial terrain representation learned by TRON using multimodal,
self-supervised vehicle-terrain interaction experiences.

III. APPROACH

We formulate the problem of forward kinodynamics mod-
eling in SE(3) for ground robots driving on unstructured
off-road terrain at high speeds, present a multimodal self-
supervised learning approach to represent off-road condi-
tions using onboard visual and inertial observations, introduce
a data-driven approach to learn the forward kinodynamic
model from past vehicle-terrain interactions, and develop a
competence-aware navigation framework that allows robots
to drive at the maximum possible speed while maintaining
vehicle stability in SE(3).

A. Forward Ground Kinodynamics in SE(3)
We adopt a forward kinodynamics formulation for ground

robots to reason about the consequences of taking different
aggressive maneuvers on various off-road terrain. We denote
vehicle state as s, which includes 6-DoF vehicle pose in SE(3)
(x, y, z, roll r, pitch p, and yaw ϕ, expressed in the global
or robot frame, Fig 2) and their corresponding velocity com-
ponents. For brevity, only the pose components are included
in the following derivation. The vehicle control u = [v, ω]T

contains linear velocity and angular velocity (for differential-
driven vehicles, or steering curvature for Ackermann-steering



vehicles). We use a world state w to denote all necessary
effects from the environment that will affect kinodynamics, in
our case, from unstructured off-road terrain. Therefore, in a
discrete setting, we have

st+1 = f(st,ut,wt), ot = g(st,wt),

st = [xt, yt, zt, rt, pt, ϕt]
T ∈ SE(3), ut = [vt, ωt]

T ∈ R2,

where f(·) is a forward kinodynamic function in SE(3),
while g(·) is an observation function. For off-road driving,
the forward kinodynamic function f(·) also takes in the world
state w as input, in contrast to models derived for structured
and homogeneous terrain that only need to consider vehicle
state st and control ut alone. For example, slippery and
rugged terrain surfaces may cause extensive movement along
the vehicle y and z directions respectively. However, world
state w is usually not directly observable and cannot be
easily modeled. Also notice that most kinodynamic models
for ground robots only consider st = [xt, yt, ϕt]

T ∈ SE(2)
and ignore all other state dimensions. Such a forward model
can be used in rolling out candidate trajectories for sampling-
based path and motion planners [45, 10], or its inverse form
can be derived to achieve desired next state s∗t+1 [48, 16].

B. Visual and Inertial Representation of World State

Considering the difficulty in analytically modeling world
state w, we use a multimodal self-supervised learning ap-
proach to represent w and approximate the observation func-
tion g(·) with onboard visual and inertial sensors. In particular,
an onboard visual camera can provide visual signature of the
terrain patch λt the robot drives over and an IMU can sense
the underlying kinodynamic responses it in terms of linear
accelerations and angular velocities. We assume the current
vehicle speed can also be observed by, e.g., odometry or GPS,
denoted as st. While IMU readings it can be directly sensed
when in contact with the underlying terrain, for high-speed
off-road navigation, the vehicle may need to reason about
future kinodynamic consequences up to a certain planning
horizon, for which only visual observations from a forward-
looking camera are available, not the IMU readings. So in
this work, we use multimodal self-supervised learning to allow
both visual and inertial observations to augment each other by
correlating them in effective representation spaces, thus either
(or both) can be used to enable competence awareness when
available (e.g., manual shared-control using current underlying
inertia and autonomous planning with vision of future terrain).

We posit that the visual and inertial observations can provide
multimodal self-supervised learning signals to represent dif-
ferent terrain kinodynamics. To achieve such self-supervision,
we use a non-contrastive approach to maximize the correlation
between visual and inertial embeddings. In this way, we avoid
the need to use privileged information such as terrain labels
that require manual annotation. However, a key difference
of high-speed off-road navigation compared to existing ter-
rain representation learning approaches [38, 18] is that the
correlation between vision and inertia is also dependent on
the (high) vehicle speed: driving quickly vs. slowly on the

same visual patch of grass may produce completely different
inertial responses, while different speeds on grass vs. gravel
may coincidentally lead to similar IMU readings. Therefore,
CAHSOR extends the vision–inertia correlation to vision &
speed–inertia correlation to account for the effect caused by
various speeds during high-speed off-road navigation.

However, two challenges still exist for visual representation:
1. Visual perception is very sensitive to environment condi-
tions, such as changes in viewpoints and lighting, as well as
occlusion and motion blur; 2. Unlike current IMU readings,
the visual signature of the terrain underneath (or right in front
of) the current robot state st can not be directly captured
by the onboard camera due to limited onboard field-of-view.
The robot needs to seek help from previous camera images
captured before t. Therefore, we design a viewpoint-invariant
visual patch extraction technique to overcome both challenges:
Denote the camera image captured h time steps ahead as ct−h
and the transformation from time step t − h to t extracted
from vehicle odometry as dtt−h. By projecting ct−h to an
overhead Bird-Eye View (BEV) using the camera homography
ht−h = H(it−h), which is dependent on the vehicle roll and
pitch angles determined by the IMU readings it−h due to
aggressive off-road driving, we can extract the terrain patch
currently underneath the robot, λt = P (ct−h, ht−h, d

t
t−h). λt

is designed to be slightly larger than the vehicle footprint to
consider actuation latency. By varying the history length h, it
is possible to generate a set of different instantiations of λt
from different viewpoints with different lighting conditions,
Λt = {λjt}Jj=1, in which each λjt has at least a certain amount
of visible pixels of the terrain patch underneath st, considering
the homography projection may cause invisible BEV pixels.

C. Terrain Representation for Off-road Navigation

The set of viewpoint-invariant visual terrain patches Λt =
{λjt}Jj=1, the IMU readings it, and the current vehicle speed
st correspond to multimodal perception of the robot at time
t and provide self-supervised learning signals for our vision
& speed–inertia correlation (Fig. 3 left). To be specific, a
vision, speed, and inertia encoder embeds any terrain patch
λt ∈ Λt, current vehicle speed st, and underlying inertial
readings it into a visual, speed, and inertial representation, ψV

t ,
ψS
t , and ψI

t, respectively. Considering the causal relation from
driving at a particular speed on a certain visual terrain patch
to corresponding IMU readings, we concatenate the visual
and speed representations, ψV

t and ψS
t , and further encode

them into a joint vision & speed embedding ψVS
t . To correlate

ψVS
t and ψIt , we project them independently into a higher

dimensional feature space, ρVS
t and ρIt . We then maximize the

correlation between ρVS
t and ρIt while considering viewpoint

invariance using Barlow Twins [60]:

LTRON = BLV(ρ
V1S
t , ρV2S

t )+

(0.5× BLV1I(ρ
V1S
t , ρIt ) + 0.5× BLV2I(ρ

V2S
t , ρIt )),

(1)

where V1 and V2 correspond to two views of the same terrain
patch to encourage viewpoint invariance, i.e., λ1t , λ

2
t ∼ Λt. BL
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Fig. 3. TRON (Left) and Downstream Kinodynamics Learning (Right) Architecture: Flame and temperature denote training and frozen parameters respectively.

is defined as:

BL =
∑
i

(1− Cii)2 + γ
∑
i

∑
j ̸=i

C2
ij , (2)

where γ is a weight term to trade off the importance between
invariance and redundancy reduction. C is the cross-correlation
matrix computed between ρ1 and ρ2:

Cij =
∑
b ρ

1
b,iρ

2
b,j√∑

b(ρ
1
b,i)

2
√∑

b(ρ
2
b,j)

2
,

where ρ1(2)b,i denotes the ith dimension of the bth sample in a
data batch of ρ1(2), which can be one of ρV1S

t , ρV2S
t , or ρIt .

Trained with multimodal self-supervision, the visual, speed,
and inertial representation, ψV

t , ψS
t , and ψI

t, can be used to
enable downstream kinodynamic modeling tasks. Depending
on the scenario, either ψV

t (predicting multiple future states
without terrain interactions to induce inertial responses) or
ψI
t (directly predicting the immediate next state from the

induced inertial responses from the underlying terrain), or
both, may be available. For simplicity, we denote our visual-
speed, inertial, or visual-speed-inertial (by concatenating the
first two) representation as ψV, S, I

t .

D. Downstream Kinodynamic Model Learning
After learning the terrain representation and freezing the

learned parameters, we also adopt a self-supervised approach
to learn the forward kinodynamics due to the difficulty in
analytically modeling f(·). We represent the unknown world
state wt using ψV, S, I

t and learn an approximate forward
kinodynamic function fθ(·) as a downstream task of TRON:

st+1 = fθ(st,ut, ψ
V, S, I
t ). (3)

With a self-supervised vehicle-terrain interaction dataset,

D = {sj+1, sj ,uj , ψ
V, S, I
j }N−1

j=0 ,

of N data points, the optimal parameters θ∗ can then be
learned by minimizing a supervised loss function (Fig. 3 right),

θ∗ = argmin
θ

∑
(sj+1,sj ,uj ,ψ

V, S, I
j )

∈D

||sj+1 − fθ(sj ,uj , ψ
V, S, I
j )||.

(4)

E. Competence-Aware High-Speed Off-Road Navigation

The approximate forward kinodynamic function (Eqn. (3))
learned with the self-supervised loss (Eqn. (4)) can be com-
bined with subsequent planners, e.g., sampling-based model
predictive motion planners [45, 10], or used in human shared-
control settings to enable competence-aware off-road naviga-
tion at high speeds. By rolling out the forward kinodynamic
model, the robot can pick the optimal control command(s) that
produces minimal cost or is most similar to human control,
without violating vehicle stability constraints. While a motion
planner or a human controller needs to consider a variety of
costs including obstacle avoidance, goal distance, execution
accuracy, etc., for simplicity, we combine all these costs into
one general cost term C(st, st+1) and use only one time-step
rollout in our presentation in order to explicitly showcase the
high speed and competence awareness aspect of the navigation
problem. Otherwise, the robot is solely maximizing navigation
speed or following human control. Notice that it is easy to
combine it with any other costs when necessary and extend to
multiple time steps (see examples in Sec. V). Expressing the
robot SE(3) state in the current robot frame (i.e., x forward,
y left, and z up), the competence-aware navigation can be
formulated as a constrained optimization problem:

u∗
t = argmax

ut

[||xt+1 − xt|| − C(st, st+1)] ,

s.t. all SE(3) constraints are satisfied,

st+1 = fθ(st,ut, ψ
V, S, I
t ).

(5)

Notice that the objective function in Eqn. (5) can be formulated
in other ways when necessary. For example, maximizing
the displacement along x can be replaced by minimizing
the difference between the control u and a desired manual
command (see Sec. IV for two possible instantiations of
Eqn. (5)). The navigation planner then finds the best control
u∗
t to maximize speed along x (and considers other costs in
C(·, ·)), while in a human shared-control setup u∗

t aims to
minimize the difference compared to human command, both
without violating SE(3) vehicle kinodynamic constraints.



IV. IMPLEMENTATIONS

We implement CAHSOR ground navigation on a 1/6-scale
autonomous vehicle, an AgileX Hunter SE, with a top speed
of 4.8m/s on different off-road terrain at high speeds to
demonstrate the proposed competence awareness. We collect a
dataset of 30-minute vehicle-terrain interactions. The collected
GPS-RTK, onboard IMU, front-facing camera, and vehicle
control data are synchronized and processed into training data.
We integrate the learned TRON and downstream kinodynamic
models and the CAHSOR framework with an autonomous
navigation planner and a human shared-control setup.

A. CAHSOR Implementations

1) TRON: The terrain vision encoder is a 4-layer Convolu-
tional Neural Network (CNN) to produce a 512-dimensional
viewpoint-invariant visual representation. The speed encoder
is a 2-layer neural network, whose 512-dimensional output
is combined with the visual representation to construct our
vision-speed representation ψVS

t . The last 2-second accelerom-
eter and gyroscope data are converted into the frequency do-
main using Power-Spectral Density (PSD) representation [59]
before being fed into the 2-layer inertia encoder and producing
a 512-dimensional inertial representation ψI

t. All encoders are
trained to minimize LTRON (Eqn. (1)).

2) Kinodynamics: Our SE(3) vehicle state is instantiated
in the current robot frame, i.e., [xt, yt, zt, rt, pt, ϕt]

T = 0,
and therefore omitted from the input of our forward kino-
dynamic model (Eqn. 3). To explicitly showcase the efficacy
of the learned kinodynamic model on state dimensions be-
yond SE(2), we limit the model output to three metrics to
reflect sliding along y, roll around x, and bumpiness along
z, i.e., [slidingt+1,rollt+1,bumpinesst+1]

T . While it
is not necessary for the human shared-control setting, for
autonomous navigation planning, other state dimensions are
produced using a simple Ackermann-steering model, whose
predicted 3-DoF trajectories are evaluated for competence
awareness with the learned kinodynamic model. Such a prac-
tice also avoids the computation overhead of sequentially
rolling out a large set of multi-step, 6-DoF candidate trajecto-
ries, which cannot be efficiently parallelized on GPUs. Using
a learned kinodynamic model for both competence aware-
ness and trajectory rollout can be done with more onboard
computation. To be specific, slidingt+1 is captured by the
ground speed sensed by GPS-RTK projected onto the robot
y axis (left); We compute the absolute angular acceleration
around the x axis (front) from the gyroscope averaged over
0.1s as rollt+1; bumpinesst+1 is computed as the absolute
jerk along the z axis (up) from the accelerometer averaged
over 0.1s. As a downstream task of TRON, the kinodynamic
model (Eqn. 3) is learned with three 256-64-1 neural network
heads, which take as input the pretrained visual, speed, and/or
inertial representation ψV, S, I

t and candidate control actions
ut = (v, ω) (omitted in Fig. 3 right for simplicity), to produce
slidingt+1, rollt+1, and bumpinesst+1.

B. Autonomous Navigation Planning with CAHSOR

We integrate our CAHSOR model with a Model Predictive
Path Integral (MPPI) planner [45]. Our MPPI planner rolls
out a set of candidate 3-DoF state trajectories using sampled
action sequences and then combines those samples based on a
predefined cost function. The cost function is informed by the
prediction of the learned 6-DoF kinodynamic model, assigning
infinitely large costs to candidate trajectories that involve
sliding, roll, and bumpiness. MPPI then updates the sampling
distribution to sample actions that are more likely to lead to
low cost trajectories, i.e., moving the robot toward a goal at
the fastest possible speed. MPPI rolls out 550 trajectories, each
with 8 vehicle states. We select six goals in an outdoor off-road
environment for the robot to drive to in a loop (Fig. 5). For
MPPI rollouts, future terrain inertial responses are not available
to the TRON model. Therefore, we only use the visual and
speed representation ψVS

t as ψV, S, I
t to represent the world

state wt associated with each future vehicle state st on the
candidate trajectories. For computation efficiency, we divide
the current BEV into a 15×51 grid and pick the terrain patch
that is closest to st on the candidate trajectories for parallelized
model query on GPU during one MPPI cycle.

C. Human-Autonomy Shared-Control with CAHSOR

We also demonstrate the use case of CAHSOR in a human-
autonomy shared-control setup, in which a human driver aims
at driving the robot as fast as possible, while CAHSOR takes
care of satisfying all vehicle SE(3) constraints with the closet
possible vehicle control to the human command. In this case,
the objective function in Eqn. (5) becomes

u∗
t = argmin

ut

||ut − uHt ||. (6)

uHt is the desired human control input, which will potentially
violate the SE(3) constraints. In this shared-control setup, both
inertia and vision (from past camera images) are available,
so TRON takes in visual, speed, and inertial representation as
ψV, S, I
t to represent the current world state wt.

V. EXPERIMENTS

We deploy CAHSOR navigation on the Hunter SE in lo-
cations different from where the training data is collected,
but with similar terrain types. We only expect the models
to generalize to similar terrain with different characteristics,
e.g., grassy area of different densities, rocky patches with
different rock sizes, and cement pavement under different
lighting conditions, but not to completely unseen terrain, e.g.,
mud or gravel, for which more training data may be necessary.

A. TRON Learning Results

To demonstrate the effectiveness of the multimodal, i.e.,
visual, speed, and inertial, and self-supervised TRON learning,
we present TRON’s downstream kinodynamics learning results
compared against a set of baselines. To be specific, we im-
plement END-TO-END kinodynamics learning from vision
(V), inertia (I), vision & inertia (VI), vision &



Loss END-TO-END STERLING TRON
V I VI VS IS VSI V VI I VS* VSI*

Roll 0.32 0.10 0.07 0.23 0.11 0.09 0.27 0.05 0.03 0.08 0.02
Sliding 0.69 0.61 0.54 0.46 0.45 0.42 0.62 0.47 0.44 0.35 0.29

Bumpiness 0.24 0.05 0.04 0.17 0.06 0.05 0.17 0.04 0.02 0.06 0.02

Combined 0.72 0.24 0.21 0.30 0.21 0.18 0.36 0.18 0.15 0.16 0.10

TABLE I
KINODYNAMICS LOSS WITH DIFFERENT REPRESENTATIONS OF VISION (V), INERTIA (I), AND SPEED (S) USING END-TO-END, STERLING, AND

TRON. * DENOTES THE MODELS DEPLOYED ON THE PHYSICAL ROBOT.

speed (VS), inertia & speed (IS), and all three (VSI),
both as an ablation study for the proposed TRON learning and
to analyze the information contained in each (and different
combinations of) perceptual modality. We also implement a
representation learning approach to correlate only vision
and inertia and deploy with vision only, without con-
sidering speed, similar to STERLING [18]. TRON is experi-
mented with inertia, vision & speed, and vision
& speed & inertia representation. Table I shows the
MSE loss on downstream kinodynamics learning tasks of
predicting roll, sliding, bumpiness, and all three combined.

As END-TO-END results show, vision contains the least
amount of information for kinodynamic model learning, pro-
ducing the highest losses on all dimensions. inertia con-
tains much more information than vision and produces
lower losses. Combining vision and inertia keeps re-
ducing the losses. On the other hand, adding speed to
vision significantly boosts performance, while inertia
combined with speed only shows marginal improvement,
possibly due to the fact that inertia already contains a large
amount of information from speed. Using all three modalities
results in the lowest combined loss overall for END-TO-
END. One important observation is that inertia significantly
outperforms vision & speed in most dimensions, except
for sliding, in the END-TO-END setup. However, TRON is
able to reduce such a performance gap by allowing them
to augment each other during representation learning and
maximize the information contained in their representation
spaces, as they achieve comparably low losses. Combining all
three after TRON learning expectedly achieves the best results
overall. STERLING is designed to use inertia to augment
vision so that information contained in vision can be
maximized when only vision is available during deploy-
ment. While STERLING works well on downstream terrain
preference learning (e.g., grass is better than pebble) [18], not
considering speed during representation learning introduces
ambiguity in the representation spaces and therefore leads to
bad performance on our kinodynamics learning task (e.g., what
will happen when driving quickly/slowly on grass/pebble). For
a fair comparison, we also show the results of STERLING
with both vision and inertia (which is not available
for planning on future states). Despite improved performance
compared to using vision alone, due to the missing speed
information during representation learning, STERLING still

suffers from worse performance compared to TRON.

B. Human-CAHSOR Shared Autonomy

We conduct the human-CAHSOR shared autonomy experi-
ments in three separate locations with different terrain types
to provide a detailed view of how CAHSOR affects vehicle
states in SE(3). The fully manual teleoperation mode gives
the human the full range of vehicle control commands, i.e.,
-4.8m/s to 4.8ms throttle and -0.5rad to 0.5rad steering.
CAHSOR selects actions based on Eqn. (5) with the objective
function in Eqn. (6). The human is asked to drive the robot
through a rocky patch and maneuver aggressively on grass and
pavement, all at the fastest speed.

We show the human commanded throttle and steering
and the CAHSOR constrained commands in Fig. 4 top, with
resulted bumpiness, sliding, and roll (Fig. 4 bottom green). For
comparison, we drive the robot without CAHSOR and overlay
the resulted bumpiness, sliding, and roll (Fig. 4 bottom red) on
the figure. CAHSOR knows to reduce speed on grass to avoid
sliding and on pavement to prevent roll during high-speed
turns, and to slow down on rocks to reduce bumpiness even
without turning. However, due to the higher requirement of
instantaneous accuracy of roll prediction compared to bumpi-
ness and sliding, we observe that during on-robot experiments,
CAHSOR is not able to prevent roll in advance all the time.

C. Autonomous CAHSOR Navigation

The autonomous CAHSOR navigation using MPPI is com-
pared against two baselines: vanilla MPPI without CAHSOR
with the same maximum speed of 4.8m/s and a slow MPPI
with a maximum speed of 3.0m/s, which aims to show that
conventional approaches need to slow down much more than
CAHSOR in order to achieve similar vehicle stability in SE(3).

Table II shows the top speed, average speed, average
bumpiness, maximum sliding, and maximum roll
achieved by the three approaches. Autonomous navigation has
the highest top speed of 4.8m/s and achieves an average of
4.29m/s around all three loops, only decelerating to reach each
pre-defined GPS waypoint. However, it experiences significant
bumpiness, sliding, and roll motions along the way. The high
bumpiness may damage onboard components. In fact, we have
to stop the experiments twice in order to fix a loose USB
connection due to extensive vibration on the rocks (Fig. 5 top
left and Fig. 1 lower left). Large roll angles also appear many
times when executing the sharp turn from cement pavement



Human Throttle CAHSOR Throttle Human Steering CAHSOR Steering Human CAHSOR

Bumpiness Sliding Roll

Constraint

Fig. 4. Example of Human-CAHSOR Shared Autonomy on Rocks, Grass, and Pavement to Limit Bumpiness, Sliding, and Roll.

Top Speed (m/s) Average Speed (m/s) Average bumpiness Maximum sliding Maximum roll

4.8m/s Autonomous 4.8 4.29±0.1 0.11±0.007 1.11 1.2
4.8m/s Autonomous+CAHSOR 4.6 3.92±0.12 0.054±0.007 0.62 0.11

3.0m/s Slow Autonomous 2.75 2.45±0.02 0.065±0.01 0.69 0.12

TABLE II
SPEED AND SE(3) COMPETENCE AWARENESS OF AUTONOMOUS, AUTONOMOUS+CAHSOR, AND SLOW AUTONOMOUS NAVIGATION.

Fig. 5. Autonomous Navigation in a Loop (Three Loops each Method).

to grass (Fig. 5 lower left and Fig. 1 top). When turning
around obstacles, excessive sliding that is not considered by
normal SE(2) models may risk collision (Fig. 5 middle and
Fig. 1 lower right). On the other hand, autonomous navigation
assisted by CAHSOR achieves a 4.6m/s top speed and slows
down more, not only in order to reach GPS waypoints, but
also due to competence awareness. We observe the vehicle
significantly slows down when about to enter the rock patch
to reduce bumpiness and executes less sharp or slower turns
on grass and on cement to avoid too much sliding and
roll. The slow autonomous navigation approach achieves a
top speed of 2.75m/s and an average speed of 2.45m/s.

This slow autonomous navigation system clocks much longer
lap time compared to its full speed counterpart without or
with CAHSOR. Even with a low speed, the slow system still
cannot achieve better average bumpiness, maximum sliding,
and maximum roll as Autonomous+CAHSOR does, because it
does not know when it is necessary to slow down to reduce
such undesired movement and when it is possible to accelerate
to achieve high speeds. The GPS waypoint loop experiments
show that CAHSOR is able to maintain a very high average
speed and only slows down when the SE(3) constraints would
be violated.

VI. CONCLUSIONS

Our CAHSOR ground navigation approach is able to utilize
multimodal, self-supervised terrain representation, i.e., TRON,
to reason about the consequences of taking aggressive ma-
neuvers on different off-road terrain, i.e., being competence-
aware. Inertial observations contain the most information to
enable efficient kinodynamics learning, but may not be avail-
able during planning. Augmenting easily available vision com-
bined with speed using inertia with TRON, similar kinodynam-
ics learning performance can be achieved. Extensive physical
experiments in both an autonomous navigation planning and
human shared-control setup demonstrate CAHSOR’s superior
competence awareness during high-speed off-road navigation.



REFERENCES

[1] Pranav Atreya, Haresh Karnan, Kavan Singh Sikand,
Xuesu Xiao, Sadegh Rabiee, and Joydeep Biswas. High-
speed accurate robot control using learned forward kin-
odynamics and non-linear least squares optimization. In
2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 11789–11795. IEEE,
2022.

[2] Chengchao Bai, Jifeng Guo, and Hongxing Zheng.
Three-dimensional vibration-based terrain classification
for mobile robots. IEEE Access, 7:63485–63492, 2019.

[3] Xiaoyi Cai, Michael Everett, Jonathan Fink, and
Jonathan P How. Risk-aware off-road navigation via a
learned speed distribution map. In 2022 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), pages 2931–2937. IEEE, 2022.

[4] Xiaoyi Cai, Michael Everett, Lakshay Sharma, Philip R
Osteen, and Jonathan P How. Probabilistic traversability
model for risk-aware motion planning in off-road envi-
ronments. In 2023 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 11297–
11304. IEEE, 2023.

[5] Yu Fan Chen, Miao Liu, Michael Everett, and Jonathan P
How. Decentralized non-communicating multiagent col-
lision avoidance with deep reinforcement learning. In
2017 IEEE international conference on robotics and
automation (ICRA), pages 285–292. IEEE, 2017.

[6] Nitish Dashora, Daniel Shin, Dhruv Shah, Henry
Leopold, David Fan, Ali Agha-Mohammadi, Nicholas
Rhinehart, and Sergey Levine. Hybrid imitative planning
with geometric and predictive costs in off-road environ-
ments. In 2022 International Conference on Robotics
and Automation (ICRA), pages 4452–4458. IEEE, 2022.

[7] Aniket Datar, Chenhui Pan, Mohammad Nazeri, and
Xuesu Xiao. Toward wheeled mobility on vertically
challenging terrain: Platforms, datasets, and algorithms.
arXiv preprint arXiv:2303.00998, 2023.

[8] Aniket Datar, Chenhui Pan, and Xuesu Xiao. Learning
to model and plan for wheeled mobility on vertically
challenging terrain. arXiv preprint arXiv:2306.11611,
2023.

[9] Anushri Dixit, David D Fan, Kyohei Otsu, Sharmita Dey,
Ali-Akbar Agha-Mohammadi, and Joel W Burdick. Step:
Stochastic traversability evaluation and planning for risk-
aware off-road navigation; results from the darpa sub-
terranean challenge. arXiv preprint arXiv:2303.01614,
2023.

[10] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. The
dynamic window approach to collision avoidance. IEEE
Robotics & Automation Magazine, 4(1):23–33, 1997.

[11] Anthony Francis, Aleksandra Faust, Hao-Tien Lewis
Chiang, Jasmine Hsu, J Chase Kew, Marek Fiser, and
Tsang-Wei Edward Lee. Long-range indoor navigation
with prm-rl. IEEE Transactions on Robotics, 36(4):1115–
1134, 2020.

[12] Anthony Francis, Claudia Pérez-d’Arpino, Chengshu Li,
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Stéphane Deny. Barlow twins: Self-supervised learning
via redundancy reduction. In International Conference on
Machine Learning, pages 12310–12320. PMLR, 2021.


	INTRODUCTION
	RELATED WORK
	Off-Road Navigation
	Machine Learning for Navigation

	APPROACH
	Forward Ground Kinodynamics in SE(3)
	Visual and Inertial Representation of World State
	Terrain Representation for Off-road Navigation
	Downstream Kinodynamic Model Learning
	Competence-Aware High-Speed Off-Road Navigation

	IMPLEMENTATIONS
	cahsor Implementations
	tron
	Kinodynamics

	Autonomous Navigation Planning with cahsor
	Human-Autonomy Shared-Control with cahsor

	EXPERIMENTS
	tron Learning Results
	Human-cahsor Shared Autonomy
	Autonomous cahsor Navigation

	CONCLUSIONS

