
Machine Learning Methods for Local Motion Planning:
A Study of End-to-End vs. Parameter Learning

Zifan Xu1, Xuesu Xiao1, Garrett Warnell1,2, Anirudh Nair1, and Peter Stone1,3

Abstract— While decades of research efforts have been de-
voted to developing classical autonomous navigation systems
to move robots from one point to another in a collision-free
manner, machine learning approaches to navigation have been
recently proposed to learn navigation behaviors from data. Two
representative paradigms are end-to-end learning (directly from
perception to motion) and parameter learning (from perception
to parameters used by a classical underlying planner). These
two types of methods are believed to have complementary
pros and cons: parameter learning is expected to be robust
to different scenarios, have provable guarantees, and exhibit
explainable behaviors; end-to-end learning does not require
extensive engineering and has the potential to outperform
approaches that rely on classical systems. However, these beliefs
have not been verified through real-world experiments in a
comprehensive way. In this paper, we report on an extensive
study to compare end-to-end and parameter learning for local
motion planners in a large suite of simulated and physical
experiments. In particular, we test the performance of end-
to-end motion policies, which directly compute raw motor
commands, and parameter policies, which compute parameters
to be used by classical planners, with different inputs (e.g., raw
sensor data, costmaps), and provide an analysis of the results.

I. INTRODUCTION

For several decades now, autonomous vehicle navigation
systems have been a topic of study and development in the
the robotics research community. While a large and varied
body of literature on the topic exists, the paradigm most com-
monly employed in deployed autonomous navigation systems
is one of hierarchical planning, in which a high-level global
planner computes a feasible path from the vehicle’s position
to a specified destination, and a low-level motion controller
[1]–[3] then seeks to move the vehicle along that path while
satisfying local constraints such as collision avoidance. To
instantiate the levels of this hierarchy, system designers have
classically employed hand-crafted and engineered techniques
from the planning and optimal control communities [1]–[3].
Increasingly, however, the research community has begun
to consider a fundamentally different way to design such
systems, i.e., through the use of tools from machine learning.

1 The Department of Computer Science, The University of Texas at
Austin, Austin, TX 78712 {zfxu, ani.nair}@utexas.edu, {xiao,
warnellg, pstone}@cs.utexas.edu 2The Computational and Information
Sciences Directorate, Army Research Laboratory 3Sony AI

This work has taken place in the Learning Agents Research Group
(LARG) at UT Austin. LARG research is supported in part by NSF
(CPS-1739964, IIS-1724157, NRI-1925082), ONR (N00014-18-2243), FLI
(RFP2-000), ARO (W911NF-19-2-0333), DARPA, Lockheed Martin, GM,
and Bosch. Peter Stone serves as the Executive Director of Sony AI
America and receives financial compensation for this work. The terms of
this arrangement have been reviewed and approved by the University of
Texas at Austin in accordance with its policy on objectivity in research.

Incorporating machine learning into the design process
for autonomous vehicle navigation systems is a topic that
has recently seen an explosion of popularity within the
research community [4]. Broadly speaking, the literature on
this topic seeks to leverage experiential data (gathered, e.g.,
in simulation or the real-world) and, using that data and
tools from the machine learning community, automatically
compute autonomous navigation systems [5]–[11]. While
this general approach can be instantiated in a number of
ways, we are interested here in two particular formulations
of the problem. The first formulation we consider is that in
which machine learning is used in an end-to-end fashion, i.e.,
what is learned is a single function called a motion policy
that directly maps sensor measurements to low-level motor
commands [5]. In contrast, the second formulation we are
concerned with here is that of parameter learning, i.e., what
is learned is a higher-level function called a parameter policy
that maps sensor measurements to hyperparameter values for
a classical motion control system [12]–[16].

These two formulations, i.e., end-to-end learning and
parameter learning, constitute two fundamentally different
approaches to the application of machine learning to au-
tonomous navigation system design. For example, espe-
cially in the context of modern neural network function
approximators, it is relatively easy to envision a motion
policy improving continually with more and more data,
whereas, with parameter learning, it is less clear if the
classical motion control component imposes limits on this
type of improvement. On the other hand, by employing
engineered motion controllers, there is perhaps reason to
believe that the parameter learning approach may generalize
better to new environments, especially with limited access
to training data. Additionally, the local controllers used in
the parameter learning approach typically exhibit desirable
properties such as provable safety guarantees and certain
notions of explainability, whereas motion policies typically
do not. Given the postulated differences between end-to-end
and parameter learning described above, it is natural to ask:
are these hypotheses borne out empirically?

In this paper, we seek to provide an answer to the
above question by performing a systematic experimental
comparison of end-to-end learning and parameter learning
for autonomous navigation systems. More specifically, we
use reinforcement learning (RL) to train both an end-to-
end motion policy and a parameter policy in simulation. We
vary the number of training environments, and evaluate the
performances on a held-out set of testing environments. We
quantify the results using a variety of navigation metrics,

2021 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)
New York, USA, October 25-27 2021

978-1-6654-1764-8/21/$31.00 ©2021 IEEE 217

20
21

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
Sa

fe
ty

, S
ec

ur
ity

, a
nd

 R
es

cu
e

Ro
bo

tic
s (

SS
RR

) |
 9

78
-1

-6
65

4-
17

64
-8

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

SS
RR

53
30

0.
20

21
.9

59
76

89
20

21
 IE

EE
 In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n

Sa
fe

ty
, S

ec
ur

ity
, a

nd
 R

es
cu

e
Ro

bo
tic

s (
SS

RR
) |

 9
78

-1
-6

65
4-

17
64

-8
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
SS

RR
53

30
0.

20
21

.9
59

76
89

Authorized licensed use limited to: New York University. Downloaded on February 07,2022 at 03:29:37 UTC from IEEE Xplore. Restrictions apply.

and the results allow us to analyze the extent to which each
approach generalizes to new environments. Additionally,
we deploy the learned systems on a physical robot in the
real-world in order to validate the approaches’ sim-to-real
transferability.

We find that, in general, the end-to-end learning approach
does not generalize as well to novel navigation environments
as the parameter learning approach, even given a very large
set of training environments. However, the end-to-end learn-
ing approach achieves the fastest traversal time in the training
environments. The parameter learning approach requires
much less data and demonstrates performance improvement
in several navigation metrics even for the smallest number of
training environments, with performance gradually increas-
ing with the size of the training set.

II. BACKGROUND

This section reviews existing work on classical and end-
to-end learning-based navigation planners, with a focus on
how they are compared with each other.

A. Classical Planners

Mobile robot navigation addresses the problem of moving
a robot from one point to another in a collision-free manner.
Given a rough global path from a coarse and fast global
planner (e.g., Dijkstra’s [17], A* [18], D* [19] algorithms),
the robotics community has developed many different clas-
sical local planners to plan motion commands to follow the
global path, to minimize time and energy to get to the goal,
and to maintain clearance to obstacles. In general, there exist
two schools of classical local planners: sampling-based and
optimization-based planners. Sampling-based planners, such
as the DWA planner [1], sample feasible commands and finds
the optimal one according to a pre-defined cost function;
optimization-based planners, such as the E-BAND planner
[2], start with an initial local trajectory and runs optimization
until the trajectory converges.

Oftentimes, successfully deploying these classical planners
requires extensive engineering effort [3]. For example, plan-
ner parameters, such as obstacle inflation radius, maximum
velocities, and optimization objective weights, need to be
manually tuned to fit specific navigation scenarios. To relax
this dependency on robotics expertise, automatic parameter
tuning methods have been proposed [20]. More recently,
Adaptive Planner Parameter Learning (APPL) [12] has gone
beyond static planner parameters and extended to dynamic
and adaptive parameters for classical local planners, leverag-
ing teleoperated demonstration [13], corrective interventions
[14], evaluative feedback [15], and reinforcement learning
[16]. Adaptive parameters allow classical planners to achieve
optimal performance in different regions of a deployment
environment. In this study, for a fair comparison against
self-supervised end-to-end planners, we adopt reinforcement
learning [16] to learn parameter policies that compute adap-
tive planner parameters to be used by the underlying classical
planners at every time step.

B. End-to-End Learning-Based Planners

In spite of the success of classical navigation planners,
end-to-end machine learning techniques have been recently
proposed to directly produce motion commands from raw
sensory input, such as LiDAR scans or depth images.
Most such end-to-end motion policies combine the classi-
cal cascaded global and local planning paradigm into one
piece, along with their corresponding components, including
costmap, sampling, optimization, etc. As described in Xiao,
et al.’s recent survey [4], approaches based on end-to-
end learning have achieved navigation capable of obstacle
avoidance [5]–[11], terrain negotiation [21], [22], and social
navigation [23], [24], while minimizing engineering effort
by learning in a data-driven fashion. However, these end-
to-end systems are typically thought to be data-hungry and
to generalize poorly to new environments. Moreover, unlike
classical systems, they lack explainability and provable safety
guarantees. To address some of these shortcomings, Pfeiffer,
et al. [25] and Xiao, et al. [4] have both suggested not to
replace global planners, but only local planners, with end-
to-end learning, especially for large and complex navigation
scenes. In terms of navigation performance, Xiao, et al.
have pointed out that end-to-end learning-based navigation
planners are rarely compared with their classical counterparts
[4].

Motivated by this lack of performance comparison be-
tween parameter learning approaches based on classical plan-
ners and end-to-end learning approaches, this paper focuses
on local planning and presents a comprehensive study of both
paradigms within a plethora of simulated environments in the
Benchmark Autonomous Robot Navigation (BARN) dataset
[26] and different physical environments.

III. TESTED APPROACHES

This section details the two tested approaches: end-to-
end learning and parameter learning. We test the approaches
on a specially designed navigation task described in Sec.
III-A with the same continuous Reinforcement Learning
(RL) algorithm (Sec. III-D). Sec. III-B and III-C detail
how we model the navigation task as Partially Observable
Markov Decision Processes (POMDPs) represented by tuples
(S,O,Ae, Te, γe, Re) and (S,O,Ap, Tp, γp, Rp) for end-to-
end learning and parameter learning respectively. The two
approaches share the same states S and observations O,
but different continuous actions A, transition dynamics T ,
reward functions R, and discount factor γ. We will detail
them in the corresponding sections. Sec. III-D describes the
RL algorithm and the distributed framework that enables the
training over multiple environments.

A. Task Definition

We test our approaches using a goal-oriented local
obstacle-avoidance (OA) navigation task defined in the BARN
dataset [26]. Fig. 2 shows three environments in the dataset.
The goal of this task is not to test a local planner’s ability
to follow a long-term global plan, but instead to evaluate

218

Authorized licensed use limited to: New York University. Downloaded on February 07,2022 at 03:29:37 UTC from IEEE Xplore. Restrictions apply.

the planner’s ability to navigate a robot through obstacle-
occupied environments quickly and safely. As shown in Fig.
2, the environments have relatively short navigation scenarios
(5m × 5m), where the robot navigates across obstacle fields
with varying densities and structures. Such a navigation
scenario can be thought of as a segment of a long-term
navigation task, and the learned policy will still have the
ability to follow any global plan. Each environment with a
pre-defined starting position (xi, yi) uniquely defines a single
OA task that navigates a robot in the direction of the y-axis
(indicated by the blue arrow in Fig. 2). The goal point for
the global planner is set at a consistent point beyond a finish
line yf = 5m. Given the current location (xt, yt), the agent
will succeed at the task when it reaches the finish line or
yt > yf .

The objective of OA is to minimize the time cost T of
reaching the finish line and the number of collisions C during
an episode with a time limit Tmax. The reward function for
OA is:

Rt = +20 ·Rg + 1 ·Rp + 0.1 ·Rc, (1)

where Rg = 1(yt > yf) is the indicator function of reaching
the finish line, and Rp = yt+1 − yt is a dense shaping
reward of the change of the y coordinate that encourages
local progress. The third term Rc is a penalty reward for
collisions:

Rc =

{
−1/(dt + 0.05) dt < 0.3
0 dt ≥ 0.3

, (2)

where dt is the distance to the closest obstacle at time
step t represented by the minimum element in a vector
of LiDAR scans, and we use a cutoff distance of 0.3m
which is empirically chosen based on the the geometric
size of the robot we experiment on. A small number (0.05)
is added to the denominator to avoid numerical instability.
The coefficients of the three terms are selected so that the
policies can learn desirable navigation behaviors for both
approaches. Since the parameter learning approach assures
safety (collision-free) with the classical local planner, we do
not apply the penalty reward term to the parameter learning
approach. We will show in Sec. IV that this change will not
deteriorate the collision avoidance behavior.

B. Parameter Learning Approach

We first describe the common state and observation spaces
between the two approaches. The state, s = (x, y) ∈ S,
represents the actual location of the robot, where (x, y)
follows the same Cartesian coordinate axis defined by the
obstacle field. An observation, o = (ō, p), is composed of
a perceptual observation ō and a planned global path p. We
compare systems that utilize two different types of perceptual
observations: LiDAR scan ol and costmap oc. A LiDAR scan
observation, ol ∈ Ol = {R}Nl , is a Nl-length vector from
an onboard LiDAR sensor. We instantiate the global path
p with a local goal g, which is a point 1m away from the
robot on the global path. We append its angle relative to
the orientation of the robot, i.e., ψ = arctan2(gy, gx).
Therefore, the observation with LiDAR scan perception

Fig. 1. An example of costmap perception represented as a grayscale image
(left) and the corresponding robot visualized in the simulation (right).

becomes o = (ol, ψ) ∈ {R}Nl+1. The observation with
costmap perception, o = oc ∈ Oc = {0, 0.5, 1}Nc×Nc , is
a Nc × Nc 2D matrix of uninflated costmap, with 0, 0.5,
and 1 denoting the free space, global path, and obstacles,
respectively. Fig. 1 shows an example of costmap perception.

The parameter learning approach utilizes a parameter
policy trained by RL to dynamically adjust the planner
parameters θ ∈ Θ of a classical planner f . The POMDP
under this context denotes a meta-environment composed
of both the underlying navigation world W (the physical,
obstacle-occupied world) and the classical planner f . At
each time step t, the agent receives an observation ot and
executes an action at = θt ∈ Ap. Then the environment will
transition to the next time step st+1, ot+1 ∼ Tp(·|st, θt) by
navigating with the classical planner f for a fix period of
time, ∆tp = 1s, under the selected planner parameter set θt.

C. End-to-End Learning Approach

The POMDP for the end-to-end learning approach shares
the same state and observation space as we described in Sec.
III-B. The motion policy learned by this approach controls
the robot by selecting a two-dimensional continuous action
vector, a = (v, ω) ∈ Ae that encodes the robot’s linear and
angular velocity. Similar to the parameter learning approach,
at each time step t, the agent receives an observation ot and
executes an action at. Then the environment will transition
to the next time step st+1, ot+1 ∼ Te(·|st, θt) by executing
the actual linear and angular velocity for a fix period of time
∆te = 0.2s.

D. Learning Algorithm

Both approaches are trained by TD3 [27], an off-policy
algorithm based on the common actor-critic framework. To
compare between the two approaches, we use the same
neural network architectures inherited from APPLR [16].
More specifically, we employ multilayer perceptrons (MLP)
with two 512-hidden-unit layers to process the LiDAR scan
observation. For the costmap observation, a light-weight
convolution neural network (CNN) is employed to learn
the embedded features of the image, then followed by the
same MLP neural network as the LiDAR scan. We denote
the structure of the CNN as sequential layers: Input →
Conv2D[16, 8, 4] → Conv2D[32, 4, 2] → Conv2D[32, 3,
1]→ FC[512]→ FC[512], where FC is the fully connected
layers with the number denoting the number of hidden units,
and Conv2D is the 2D convolution neural network with the
numbers denoting the number of channels, kernel size, and
stride respectively.

219

Authorized licensed use limited to: New York University. Downloaded on February 07,2022 at 03:29:37 UTC from IEEE Xplore. Restrictions apply.

We study generalizibility of the policies learned over
different sizes of training sets. We define a set of navigation
environments with different obstacle fields as a training set.
To learn from such a training set with multiple environments
simultaneously, we implement a distributed training frame-
work (similar to Gorila [28]) with one serial learner and
multiple actors running the environments in parallel. Then,
one or multiple actors run one environment to generate the
experiences in the global replay buffer.

We learn the hyper-parameters with APPLR [16]. For a fair
comparison, we use the same hyper-parameters for the end-
to-end learning approach except the discount factor: we use
a discount factor γ of 0.99 accounting for the shorter time
step in the end-to-end learning approach, in contrast to 0.95
for the parameter learning approach.

IV. TEST RESULTS
We compare learning performance of three approaches:

parameter policy with LiDAR input (params lidar), param-
eter policy with costmap input (params costmap), and end-
to-end motion policy with LiDAR input (e2e lidar). We do
not include end-to-end motion policy with costmap input
(e2e costmap) results due to its poor performance, but we
discuss possible reasons. In Sec. IV-A, we provide simulation
details. In Sec. IV-B, we present test results of the three
approaches under three different training environment sizes.
In Sec. IV-C, we present test results on a physical robot.

A. Simulation Specifications
We implement all the approaches on a simulated ClearPath

Jackal differential-drive ground robot. The specifications of
this simulated robot are kept exactly the same as in APPLR
[16], including the ROS move base navigation stack [29]
and classical local planner DWA [1]. We query the costmap
from the navigation stack. The original costmap is first
rotated to align with the current robot orientation, and then
clipped as a 84 × 84 matrix centered at the robot, which
covers roughly the same range as the clipped LiDAR scan.

The OA tasks are defined in the BARN dataset [26]
with 300 simulated navigation environments. The obstacle
fields in the environments cover different navigation dif-
ficulty levels, ranging from relatively open environments
to highly-constrained spaces (three example environments
with different difficulties are shown in Fig. 2). Given 300
environments, we randomly select 50 environments as the
evaluation set. Then, from the remaining 250 environments,
we randomly select 10, 50 and all 250 environments as
three different training configurations. We train the policies
simultaneously using a distributed training framework on a
computing cluster. For each of the training process, we run
250 actors in parallel, each assigned with one CPU core,
and equally allocate the actors to the environments, i.e.,
the 10-environment configuration has 25 actors running per
environment.

B. Simulated Tests
The three approaches, params lidar, params costmap, and

e2e lidar, are trained in the three training configurations

Fig. 2. Indexed Example Navigation Environments in BARN [26]. y-axis
is the pre-defined navigation direction. Higher indices (ranging from 1-300)
represent more difficult environments.

Fig. 3. Test results of the policies on the held-out evaluation environments
trained in 250 training environments. The relative performances of the
metrics are reported by subtracting the metrics’ values of the classical DWA
planner (the values are indicated as Baselines on the top of each figure). Fig.
(a), (b) are the relative traversal time and collision (the lower the better),
and Fig. (c), (d) are the relative success rate and smoothness (the higher the
better).

with 10, 50 and 250 environments. After training with one
training configuration, we evaluate the policy on both the
held-out evaluation environments and the original training
environments with 20 trials per environment. The following
metrics are used to evaluate the navigation performance:
• Traversal time: the average total time used to finish

the task. Only the successful trials are counted.
• Success rate: the percentage of successful trials.
• Collisions: the average number of collisions per trial.

Note that we use the same cutoff distance (0.3m) as in
Eqn. 2 to determine a “soft” collision, which indicates
a risky state rather than an actual collision.

• Smoothness: the percentage of positive linear velocity
commands in all velocity commands.

We begin with the maximum number (250) of training
environments. As shown in Fig. 3(a), the three policies
achieve similar traversal time, which is about 10s less than
the baseline DWA planner. Additionally, as the collision
metric shows in Fig. 3(b), in spite of the significant im-
provements in terms of traversal time, the params lidar
and params costmap policies do not sacrifice the collision-
free guarantee from classical local planners. The e2e lidar
policy, however, undergoes severe degradation in terms of
collision avoidance. This degradation is also reflected in
the success rate metric (Fig. 3(c)), for which the e2e lidar
policy suffers from the worse performance among the three
policies. Interestingly, for all three approaches, smoothness

220

Authorized licensed use limited to: New York University. Downloaded on February 07,2022 at 03:29:37 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Test results of the policies on both evaluation environments (top row) and training environments (bottom row) under three training sizes: 10,
50 and 250 environments. The relative performances metrics are reported by subtracting the metrics’ values of the classical DWA planner (the values are
indicated as Baselines at the top of evaluation result figures). The metrics on the left-hand side of the dashed line are the lower the better, while the metrics
on the right-hand side are the higher the better.

drops compared to the default DWA, which we hypothesize
as an inevitable cost to achieve faster traversal time.

Fig. 4 extends test results to all three training configura-
tions, and the results on both the evaluation environments
and training environments are reported. The experiments
with 10 training environments is to test possible general-
ization under a limited number of training environments.
After training, in the training environments (bottom row of
Fig. 4), e2e lidar achieves the best performance with about
25s reduction of traversal time, almost the same amount
of collision, more than 6% increase of success rate, and
more than 10% improvement of smoothness compared to
the default DWA planner (the first green column in each
bottom figure in Fig. 4), which indicates a very good learning
results with this training configuration. However, e2e lidar
suffers from catastrophic failure in the held-out unseen
evaluation environments (the first green column in each top-
row figures). Instead, the params lidar and params costmap
policies demonstrate considerable improvements in terms
of traversal time and success rate and maintains nearly
the same performance for other metrics in the training
environments. Only a small degradation is shown in the
evaluation environments even with only 10 training envi-
ronments. By analyzing the change of these metrics with
increasing number of training environments, we can see a
general tendency of improvement in terms of all the metrics
in the evaluation environments, which indicates a better
generalization with more environments seen during training.
We also notice a relatively stable collision count over all
the tests for params lidar and params costmap, which shows
that tuning the parameters of a classical local planner inherits
its collision-free assurance.

To study the effect of two types of perceptual observations,
we compare the two variants of parameter learning approach:
params lidar and params costmap. As shown in Fig. 4(a)
and 4(c), better traversal time and success rate are achieved
by params costmap with 10 and 50 training environments.

TABLE I
AVERAGE TRAVERSAL TIME AND SUCCESS RATE

Easy Medium Hard

params lidar 12.42s (3/3) 24.23s (3/3) 23.40s (3/3)
params costmap 11.73s (3/3) 14.65s (3/3) 19.04s (3/3)

e2e lidar 11.25s (3/3) 15.17s (1/3) NA (0/3)
DWA 26.46s (3/3) 29.80s (3/3) 53.66s (3/3)

This better generalization is possibly because the costmap
contains rich historical information and acts as a better
representation of the agent’s state. This better representation
facilitates the generalization to unseen environments. Using
e2e costmap, the robot fails to learn a collision-avoidance
policy. We hypothesize possible explanations as follows: the
image data of the costmap usually takes longer to query and
process, which may lead to instability between time steps.
Given higher frequency of the end-to-end motion policies
(5Hz v.s. 1Hz for parameter policies), the motion policies
become more sensitive to this instability, which may account
for the failure of e2e costmap.

C. Physical Tests

We deploy the policies, including the default DWA system,
in three real-world navigation environments with different
difficulty levels. We label them as easy, medium and hard
respectively, as shown in Fig. 5. We launch three trials for
each policy and measure traversal time for the successful
trials. The average traversal time and the success rate (in
parentheses) are reported in Table I.

As expected, the end-to-end motion policy shows poor
generalization. In the three navigation environments, the end-
to-end motion policy only exhibits successful navigation in
the easy environment and fails two and all three trials in
the medium and hard environment, respectively. Among the
successful trials, e2e lidar achieves the best traversal time,
which is consistent with the simulation results. Interestingly,
the params costmap policy outperforms the params lidar
policy in all three environments. This is possibly accounted

221

Authorized licensed use limited to: New York University. Downloaded on February 07,2022 at 03:29:37 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Real-world navigation environments with three difficulty levels.

for by the increasing raw sensor noise level in the real-world.
The costmap, on the other hand, is built upon a history with a
longer time horizon, which is more robust to real-world sen-
sor noise. In general, the two parameter policies demonstrate
desirable generalization to real-world navigation, while the
end-to-end motion policy suffers catastrophic failures similar
to the simulation results.

V. CONCLUSIONS

In this paper, we systematically tested the generalizability
of an end-to-end learning approach and a parameter learning
approach for autonomous navigation systems. Our results
indicated that the parameter learning approach has better
generalizibility by performing well on the evaluation set
with limited access to training data. Additionally, such gen-
eralizibility kept improving with increasing size of training
data. In contrast, despite very good learning results on the
training environments, catastrophic failures, i.e., collisions,
were common in the evaluation environments for end-to-end
learning policies, even when being trained on a large set of
training environments. Real-world physical test results were
consistent with simulation results. While these results are
based on manually selected hyper-parameters, e.g., coeffi-
cients in the reward function and training parameters, how
the hyper-parameters influence the generalizibility remains
to be investigated in the future.

REFERENCES

[1] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4,
no. 1, pp. 23–33, 1997.

[2] S. Quinlan and O. Khatib, “Elastic bands: Connecting path planning
and control,” in [1993] Proceedings IEEE International Conference
on Robotics and Automation. IEEE, 1993, pp. 802–807.

[3] X. Xiao, J. Dufek, T. Woodbury, and R. Murphy, “Uav assisted usv
visual navigation for marine mass casualty incident response,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2017, pp. 6105–6110.

[4] X. Xiao, B. Liu, G. Warnell, and P. Stone, “Motion control for mobile
robot navigation using machine learning: a survey,” arXiv preprint
arXiv:2011.13112, 2020.

[5] H.-T. L. Chiang, A. Faust, M. Fiser, and A. Francis, “Learning
navigation behaviors end-to-end with autorl,” IEEE Robotics and
Automation Letters, vol. 4, no. 2, pp. 2007–2014, 2019.

[6] A. Francis, A. Faust, H.-T. L. Chiang, J. Hsu, J. C. Kew, M. Fiser,
and T.-W. E. Lee, “Long-range indoor navigation with prm-rl,” IEEE
Transactions on Robotics, vol. 36, no. 4, pp. 1115–1134, 2020.

[7] B. Liu, X. Xiao, and P. Stone, “A lifelong learning approach to mobile
robot navigation,” IEEE Robotics and Automation Letters, vol. 6, no. 2,
pp. 1090–1096, 2021.

[8] X. Xiao, B. Liu, G. Warnell, and P. Stone, “Toward agile maneuvers
in highly constrained spaces: Learning from hallucination,” IEEE
Robotics and Automation Letters, vol. 6, no. 2, pp. 1503–1510, 2021.

[9] X. Xiao, B. Liu, and P. Stone, “Agile robot navigation through hallu-
cinated learning and sober deployment,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2021.

[10] Z. Wang, X. Xiao, A. J. Nettekoven, K. Umasankar, A. Singh,
S. Bommakanti, U. Topcu, and P. Stone, “From agile ground to aerial
navigation: Learning from learned hallucination,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2021.

[11] H. Karnan, G. Warnell, X. Xiao, and P. Stone, “Voila: Visual-
observation-only imitation learning for autonomous navigation,” arXiv
preprint arXiv:2105.09371, 2021.

[12] X. Xiao, Z. Wang, Z. Xu, B. Liu, G. Warnell, G. Dhamankar, A. Nair,
and P. Stone, “Appl: Adaptive planner parameter learning,” arXiv
preprint arXiv:2105.07620, 2021.

[13] X. Xiao, B. Liu, G. Warnell, J. Fink, and P. Stone, “Appld: Adaptive
planner parameter learning from demonstration,” IEEE Robotics and
Automation Letters, vol. 5, no. 3, pp. 4541–4547, 2020.

[14] Z. Wang, X. Xiao, B. Liu, G. Warnell, and P. Stone, “APPLI:
Adaptive planner parameter learning from interventions,” in 2021
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2021.

[15] Z. Wang, X. Xiao, G. Warnell, and P. Stone, “APPLE: Adaptive plan-
ner parameter learning from evaluative feedback,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2021.

[16] Z. Xu, G. Dhamankar, A. Nair, X. Xiao, G. Warnell, B. Liu, Z. Wang,
and P. Stone, “APPLR: Adaptive planner parameter learning from
reinforcement,” in 2021 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2021.

[17] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[18] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968. [Online].
Available: https://doi.org/10.1109/tssc.1968.300136

[19] D. Ferguson and A. Stentz, “Using interpolation to improve path
planning: The field d* algorithm,” Journal of Field Robotics, vol. 23,
no. 2, pp. 79–101, 2006.

[20] D. Teso-Fz-Betoño, E. Zulueta, U. Fernandez-Gamiz, A. Saenz-
Aguirre, and R. Martinez, “Predictive dynamic window approach
development with artificial neural fuzzy inference improvement,”
Electronics, vol. 8, no. 9, p. 935, 2019.

[21] S. Siva, M. Wigness, J. Rogers, and H. Zhang, “Robot adaptation
to unstructured terrains by joint representation and apprenticeship
learning,” in Robotics: science and systems, 2019.

[22] X. Xiao, J. Biswas, and P. Stone, “Learning inverse kinodynamics for
accurate high-speed off-road navigation on unstructured terrain,” IEEE
Robotics and Automation Letters, 2021.

[23] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware
motion planning with deep reinforcement learning,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2017, pp. 1343–1350.

[24] R. Mirsky, X. Xiao, J. Hart, and P. Stone, “Prevention and res-
olution of conflicts in social navigation–a survey,” arXiv preprint
arXiv:2106.12113, 2021.

[25] M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, and C. Cadena,
“From perception to decision: A data-driven approach to end-to-
end motion planning for autonomous ground robots,” in 2017 ieee
international conference on robotics and automation (icra). IEEE,
2017, pp. 1527–1533.

[26] D. Perille, A. Truong, X. Xiao, and P. Stone, “Benchmarking metric
ground navigation,” in 2020 IEEE International Symposium on Safety,
Security, and Rescue Robotics (SSRR). IEEE, 2020, pp. 116–121.

[27] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function
approximation error in actor-critic methods,” 2018.

[28] A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. D.
Maria, V. Panneershelvam, M. Suleyman, C. Beattie, S. Petersen,
S. Legg, V. Mnih, K. Kavukcuoglu, and D. Silver, “Massively parallel
methods for deep reinforcement learning,” 2015.

[29] OSRF, “Ros wiki move base,” http://wiki.ros.org/move base, 2018.

222

Authorized licensed use limited to: New York University. Downloaded on February 07,2022 at 03:29:37 UTC from IEEE Xplore. Restrictions apply.

