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Abstract— This research teams an Unmanned Surface Vehicle
(USV) with an Unmanned Aerial Vehicle (UAV) to augment
and automate marine mass casualty incident search and rescue
in emergency response phase. The demand for real-time re-
sponsiveness of those missions requires fast and comprehensive
situational awareness and precise operations, which are chal-
lenging to achieve because of the large area and the flat nature
of the water field. The responders, drowning victims, and rescue
vehicle are far apart and all located at the sea level. The long
distances mean responders cannot clearly discern the rescue
vehicle and victims from the surrounding water. Furthermore,
being at the same elevation makes depth perception difficult.
Rescue vehicle and victims at different distances from the
responder will always appear to be close together. This makes
it almost impossible for the responders to accurately drive the
USV to the victims in time. This paper proposes the use of a
UAV to compensate for the lack of elevation of the responders
and to automate search and rescue operations. The benefit of
this system is two fold: 1) the UAV provides responders with
an overhead view of the field, covers larger area than direct
visual, and allows more accurate perception of the situation, and
2) it automates the rescue process so that the responders can
focus on task-level needs instead of tediously driving the USV
to the victims. Thirty autonomous navigation trials in 4 rescue
scenarios prove the first known successful implementation of a
small UAV visually navigating a USV.

I. INTRODUCTION

Unmanned Surface Vehicles (USVs) have been used since
2004 for disaster recovery operations [1]. Multiple USVs,
including Unmanned Marine Vehicles (UMVs), underwa-
ter Remotely Operated Vehicles (ROVs), and Autonomous
Underwater Vehicles (AUVs), were deployed in Hurricane
Wilma [2] [3], Hurricane Ike [4], Tohoku Earthquake and
Tsunami [1] [5]. The applications of deploying USVs for
emergency response mainly focus on the recovery phase
of disaster management, such as port and littoral damage
inspection [4], safe lanes for sea navigation [2], hazardous
materials spills detection, or serving as a wireless network
relay [3]. Other applications include a new type of Simulta-
neous Localization and Mapping (SLAM) with vision both
above and below the waterline [3], port clearing, and victim
recovery [1] [5]. However, this focus on using USVs for
structural and economic recovery neglects the usability of
those vehicles in the response phase, especially for victim

1Xuesu Xiao, Jan Dufek, and Robin Murphy are with the De-
partment of Computer Science and Engineering, Texas A&M Uni-
versity, College Station, Texas 77843 xiaoxuesu@tamu.edu,
dufek@tamu.edu, murphy@cse.tamu.edu

2Tim Woodbury is with the Department of Aerospace
Engineering, Texas A&M University, College Station, Texas 77843
twoodbury@tamu.edu

*Equally contributing authors

Fig. 1. Actual problem encountered by marine mass casualty rescuers:
view point from USV operator. The USV and victim are not discernible
from the view point at limited altitude on shore. Objects may actually be
far apart, especially in perpendicular direction to shore, even though they
appear to be very close due to perspective effect.

search and rescue, where the real-time responsiveness is
much more critical. For example, the coastline search and
rescue mission taking place in Lesbos, Greece, is to save
refugees from drowning. Response time is critical for victims
in danger, and USVs could reach the victim faster than
a human rescuer. USVs can provide flotation to conscious
victims, deliver rescue lines to boats in trouble, and give
guidance for boats to a safer location. USVs can also be used
to attend to less urgent victims, while human lifeguards swim
to aid the people who need special professional attention. The
state-of-art practice of using USV for marine mass casualty
search and rescue is mainly based on manual operation. The
rescuers use a remote controller to drive the USV to victims.
However, this approach is subject to challenges caused by
human’s limited perception capability: human eyes cannot
see very far from shore and the limited height makes depth
perception difficult. Fig. 1 is the view from a USV operator.
It is almost impossible to clearly discern where the USV
and victims are. Depth perception is even more challenging
because USV and victims can appear to be very close to
each other even if they are at completely different distances
from operator. This work mainly aims at solving this problem
in marine mass casualty response and use autonomy to
largely improve the responders’ efficiency. To the authors’
knowledge, this is the first known implementation of a small
UAV visually navigating a USV.

II. RELATED WORK

Using both Unmanned Aerial and Ground Vehicle in
heterogeneous robot teams is not a brand new topic. In
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[6], a certain area is searched by a UAV-UGV team. Teams
of UGVs are responsible for monitoring map cell border,
while UAVs scan each individual cell. In [7], researchers
look into a hierarchical way for UAV-UGV cooperation.
Based on the better situation awareness provided by the
UAV’s high altitude, a top-level mobile mission controller
is implemented to guarantee better system-level decision
making. More researchers pay attention to closer cooperation
between UAV and UGV, mostly in a lower-level sensing or
sense/act scenario. UAVs are usually used to assist the UGV.
In [8], a blimp provides overhead view over a stadium, where
the UGV’s location could be more effectively estimated by
visual cues. UAV and UGV teams are also used for radio
map construction [9] and image plane calibration [10]. Those
work shows that a UAV with vision capability can improve
the system’s situation awareness. This paper applies this
idea from ground to marine surface to solve a new marine
mass casualty search and rescue problem, and extends the
rescuer’s capability into areas which in current practice are
not possible with only human operators. Furthermore, our
method can also directly initiate the locomotion of the USV
and thus frees the operator from tedious manual control. The
responders could then focus on more critical task-level needs.

The control of an unmanned vehicle by a UAV has also
been explored in the literature. In particular, Rao, Kumar, and
Taylor offer promising results that the control of a ground
vehicle from an aerial overview is differentially flat given the
camera system is well calibrated [11]. However, the result of
this work is only demonstrated in simulation. Based on [11],
physical experiments are conducted, but only in controlled
indoor lab environment, where the homography that relates
the image plane to the ground plane is easy to calibrate [12].
[13] conducted outdoor physical experiments, but the UAV’s
partner is only a UGV moving on stable and thus less chal-
lenging solid flat ground. In this paper, a USV is controlled
by a UAV in physical experiments conducted in outdoor open
water area (Fig. 2). The uncontrollable environmental factors,
such as variations in wind, wave, and illumination conditions,
makes camera calibration difficult and cause challenges in
control, tracking, and robustness. Furthermore, the nature of
search and rescue missions in emergency response requires
real-time and fast responsiveness of our system. To the
authors’ knowledge, this is the first known implementation
of a UAV visually navigating a USV.

The paper is organized as follows: Section II discusses the
previous work. In Section III, the heterogeneous robot team
is introduced. Section IV and Section V describe the USV’s
tracker and controller respectively. The experimental results
are presented in Section VI. Section VII concludes the paper.

III. SYSTEM OVERVIEW

Our system is composed of a USV, designated EMILY
(Emergency Integrated Lifesaving Lanyard), a UAV (Fo-
tokite), ground stations for both vehicles, and a tracking-
control system (network) that bridges the two platforms.
However, in general, any UAV platfoms with online visual
feed and USVs with rudder and throttle control could be used

Fig. 2. EMILY visual navigation in Galveston Bay, Texas under strong
wind (17km/h) and current

in our approach. Our system is in a ”plug-and-play” setting,
independent of the particular robots used by the responders.
Therefore, the contribution of this paper is a working system
configuration compatible with a variety of commercially
available robotic platforms. This system is fieldable and can
solve a real-life search and rescue problem and improve
response efficiency, which are, to our knowledge, impossible
in current practice with only human rescuers.

A. EMILY

In conventional water rescue missions, rescue boats 1) are
operated by a human captain onboard and 2) carry victims
to land. In this work, a USV, EMILY (Fig. 1), is remotely
controlled by the operator, or automatically navigates either
using GPS or overhead visual. Furthermore, instead of carry-
ing the victims back, EMILY can approach the victims and
then serve as a buoy. EMILY can either provide flotation until
a rescuer arrives, deliver life jackets, or pull a recovery rescue
line up to 800 feet through strong currents and large surf.
The main advantage of deploying EMILY is the fast response
time. This 1.2m long remote controlled buoy can cruise
through rip-currents and swift water at speeds up to 35 km/h
to reach distressed swimmers faster than a swimming human
lifeguard. For propulsion, EMILY uses a steerable jet pump
with inlet grate. This mechanism has the dual advantages
of being safer for the victims than an external propellor,
and will not bind up on rocks or sand [14]. Four possible
scenarios where EMILY can help are as follows: 1) getting
flotation to victims and then pulling them to the rescue boat
or shore, 2) bringing a rescue line to a boat in trouble, 3)
providing a target for a manned boat to follow to a safer area,
4) allowing human lifeguards to swim to aid the victims who
need special professional attention, while EMILY goes to the
people who are still able to grab on. All four applications
require a precise and comprehensive situational awareness,
which cannot be guaranteed by human visual observation
from distance.

We augment EMILY’s standard remote controller with a
Pixhawk autopilot. This provide us with an interface to more
autonomous capabilities. The autopilot communicates to its
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ground station via 915 MHz radio. On the base station, We
use Mission Planner. It provides a graphical user interface to
the remote vehicle. Remote control, GPS waypoints naviga-
tion, and any custom developed autonomous functionalities
are integrated in the Pixhawk and Mission Planner setup,
including our UAV visually assisted navigation. Return To
Home (RTH) functionality is a failsafe for situations where
EMILY is out of the radio range, radio interference is
strong on site, or the radio communications link is otherwise
disrupted.

B. Fotokite
The ability of small four-rotor VTOL (Vertical Take-Off

and Landing) UAV to hover is desirable for a wide range of
applications like searching, surveillance and reconnaissance
missions. The visual feedback provided by the on-board
camera can give an overhead view above the field, and thus
give valuable information about the scenario. In this work,
a four-rotor tethered UAV, Fotokite Pro, is used to serve as
a visual assistant to the USV, EMILY. The tether is used for
power transmission from the ground station and safety. This
can largely reduce the weight for the battery onboard, thus
extending the flight time and making the aircraft more agile.
Other than Fotokite used in this work, any rotorcraft with
live video feed could play the role of visual assistant for this
particular application (such as DJI Inspire in Fig. 2).

On the Fotokite ground station, operator can control the
drone using different control joysticks and command the
aircraft to hover at a certain position. The video is streamed
from the GoPro camera onboard to the ground station. The
ground station provides an HDMI port for video output,
which we can use for tracking and control purposes [15].

C. System Setup
In this heterogeneous robot team, the USV and UAV are

connected by a network, which extends from the rescuers,
to the water surface and air, as shown in Fig. 3.

Fig. 3. System Setup

Fotokite is automatically hovering in the air above the
area of interest. EMILY and as many victims as possible

should fit in the field of view of the UAV’s onboard camera.
Both position and altitude of the drone are important. The
location should cover as many objects of interest as possible,
and the altitude determines the coverage of the scene and
the difficulty in tracking, since the higher the drone is, the
fewer pixels the objects occupy in the image, and thus more
difficult it is for the tracking algorithm.

The GoPro video is streamed from the drone to the ground
station. The video is sent via the HDMI output to Inogeni
HDMI-USB Converter that makes the video ready for any
laptop with USB ports. A laptop takes in the video stream
and runs the tracking algorithm. The tracking outputs the
position and orientation of EMILY in the image frame, which
are passed to the controller. The controller then calculates the
rudder and throttle commands based on EMILY’s current
position and orientation, and the victim’s location, which
could be more precisely defined by the operator due to
his/her enhanced situation awareness provided by the UAV.

The rudder and throttle commands are then sent via
Ethernet to another laptop running Mission Planner. Mission
planner is able to transmit those commands via 915 Mhz
radio to EMILY. The Pixhawk onboard takes the commands
from its antenna and controls the steering servo and jet motor
to approach the victim.

IV. VISUAL TRACKING

Visual tracking extends on [16], where error of only a
few pixels in a full HD video feed already proved the
sufficient accuracy for EMILY position tracking. We improve
the orientation tracking by Douglas-Peucker algorithm [17].
A “warping” function for oblique camera view is added to
face the situation where the UAV is not high enough so
only an oblique view is available. It is not to say other
more sophisticated tracking methods such as Deep Neural
Networks or feature based template tracking are not helpful
in our system, but the histogram-based blob tracking works
robustly enough in all our field experiments. This suffices
for the preliminary result of a fieldable working system.

A. Position Estimation

Unlike indoor or controlled environments, video feed in
each rescue mission varies with different locations, illumi-
nation, weather conditions, etc, so we use human intelligence
to initialize tracking with a selected template. After hue
histogram backprojection detection, CamShift algorithm [18]
is applied to guarantee smooth tracking. The centroid of the
CamShift window is taken as the centroid of EMILY.

B. Orientation Estimation

Estimation based on blob shape analysis [16] is proved
to be not precise enough to enable reliable navigation in
our field experiments. Orientation is estimated by using the
movement history. The position of EMILY in the image is
recorded over time. To handle the jerky motion caused by
noise, we use Douglas-Peucker algorithm to approximate the
movement with a curve with fewer vertices. This filters out
the noise and leaves a smoother trajectory. A tangent at the

6107

Authorized licensed use limited to: University of Texas at Austin. Downloaded on July 08,2020 at 00:37:45 UTC from IEEE Xplore.  Restrictions apply. 



last point of the approximated curve is computed as the
orientation.

C. Homogeneous Transformation

Sometimes the UAV is not hovering at a high altitude or
it has to stay above the shoreline due to FAA regulations,
then instead of a perfect overhead shot an oblique view is the
best input to the visual tracker. While tracking of horizontal
motions in the oblique image frame is still precise enough,
vertical motion, especially when EMILY is far away from
camera, is not easy to discern by the tracker due to per-
spective effect. To resolve this, we add homogeneous trans-
formation, which is based on an estimation of the oblique
angle. The “inverse perspective warping” can “enlarge” the
diminished distant areas so that EMILY’s motion could be
easily recognized. Experiment results suggest that “warping”
function enables vertical navigation, which is impossible to
achieve in some very oblique view points without “warping”.

D. Graphical User Interface

The graphical user interface (Fig. 4) was designed to
make it easier to set parameters (using sliders) and see
the navigation progress. Tracking, warping, and control
parameters can be set instantly based on different rescue
scenarios. Both EMILY and target can be selected on the
fly to increase responsiveness. The operator can monitor
the progress of tracking (including visualization of position,
orientation, shape, and trajectory of EMILY) and see the
histogram and backprojection.

Fig. 4. Tracking User Interface

V. CONTROL

To navigate EMILY to desired victim location, the system
uses line-of-sight for high-level control and PID for USV
heading direction.

A. Line-of-sight Control

Line-of-sight control is used in this work considering the
system’s online and physical implementation requirement.
Line-of-sight control is a well-developed control strategy for
path following. Previous work looked into the stability [19],
implementation [20], and control laws for this technique [21].

It is not only suitable for conventional mobile systems [22] or
under-actuated vehicles [23], it has also been used to navigate
hyper redundant locomotors, such as snake robots [24], along
a predefined path. Therefore the line-of-sight control strategy
suffices for this particular application as well.

The planned path for the USV is an ordered set of target
points, which are denoted by Pn. At each time step, Pk−1

denotes the previous target point visited by the USV while
Pk designates the current target point, as shown in Fig. 5. The
two consecutive waypoints Pk−1 and Pk are connected by a
straight line segment. A circle with radius L around the USV
intersects with that line segment at two points. Between these
two points, we designate the one closer to the next target
point, Pk, as line-of-sight point, Plos. The line-of-sight point
is the point which the controller aims toward at every single
time step. A circle with radius Rk is defined as the circle of
acceptance around Pk. When the USV is within this circle,
it means the robot already arrived at this particular waypoint
and the next target waypoint is updated to Pk+1.

Fig. 5. Line-of-sight control based on heading error angle

B. Rudder and Throttle Control
After the high level line-of-sight navigation is defined, the

control strategy is specified to move the USV toward the line
of sight point, and thus lead it to the victim. There are two
control regimes, which are discussed subsequently.

1) Turning Mode: When the error angle (Fig. 5) is greater
than 30°, the controller is in turning mode. The rudder is set
to the maximum value aiming toward the target point and
only 30% of the maximum throttle is applied. This imitates
the “turn in place” motion of differential-drive vehicles. But
the non-holonomic USV has a small turning radius.

2) PID Mode: When the error angle (Fig. 5) is within the
30° threshold, proportional-integral-derivative (PID) control
is used to achieve a desired heading. Throttle is set to 60%
of the maximum value.

C. Throttle Control
In addition to the two modes mentioned above, to ensure

safety, EMILY decelerates when approaching the victims by
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setting the throttle value proportional to the distance to target.

VI. EXPERIMENTS

To test the performance of the proposed system, exper-
iments are conducted on both GPS and visual navigation
in Galveston Bay, Galveston, TX (Fig. 2), Lake Bryan,
Bryan, TX (Fig. 6(a)), John Crompton Park, College Station,
TX (Fig. 6(b)), and Porto Antico di Genova, Genoa, Italy.
GPS navigation is not applicable for our search and rescue
scenario since the GPS coordinates of the victim is not
available for our navigator. However the GPS data are used
as ground truth to evaluate the visual navigation results since
we can extract GPS coordinates when EMILY reaches target.

In Fig. 2, one EMILY’s visual navigation trial is shown.
EMILY’s position and orientation at different time frames
are overlaid to one single overhead view from the UAV.
The high altitude of the UAV provides an almost vertical
view of the scene. However, the constantly changing strong
wind and wave in the bay area causes challenges for the
controller resulting in a curved trajecotory. Results for two
example visual trials in Lake Bryan and John Crompton Park
are presented in Fig. 6(a) and Fig. 6(b) without and with
“warping”. The ground truth in GPS frame is presented for
the latter. The relations between the USV’s actual movement
and the parameter profiles are illustrated.

In Fig. 6(a), EMILY turns around after initialization,
because the heading direction is opposite to the target at
the beginning. After that, the system is in PID mode. Before
reaching the target, the error angle exceeds the threshold, so
the controller is in turning mode again to orient the heading
of EMILY within the 30° range of the target. EMILY reaches
the target in PID mode and decelerate. Distances are in image
coordinates.

With a lower camera altitude and larger oblique angle (Fig.
6(b)), “warping” is used to rectify the image to an approxi-
mated overhead view. It can navigate along the vertical image
direction, which is impossible without “warping”. Distances
are in GPS frame.

In both cases, the PID-controller controls the rudder and
throttle to reduce the absolute value of Emily’s error angle. It
oscillates around zero along the entire path. The distance to
target is continuously reduced while EMILY is approaching
the target. The distance to the ideal straight line path also
oscillates due to the nature of the PID-controller and envi-
ronmental disturbances (wind and wave). We analyze this
cross track error in detail. The throttle and rudder profiles
also match with the control strategy and USV movement.

Results of experiments conducted in Galveston Bay, Lake
Bryan, John Crompton Park, and Porto Antico di Genova,
are summarized in Tab. I. Each test contains multiple visual
navigation runs and in all runs EMILY successfully navigates
to the target. We compute the cross track error as the distance
between EMILY’s ground truth GPS position to the ideal
straight line path. The maximum cross track error is very
sensitive to the initial heading. Because EMILY is non-
holonomic, turning around largely increases the maximum
cross track error if its initial heading is in opposite direction

from the target. The wind condition also has a strong effect
on the average and maximum cross track error, especially in
open water area with strong wind and current.

VII. CONCLUSIONS

In this paper a novel USV-UAV heterogeneous robotic
team for automatic marine mass casualty response is pro-
posed, designed, and implemented. The overhead view com-
pensates for the lack of elevation of human responders on
shore, thus makes search and rescue in distant water areas
possible, and also increases situation awareness and oper-
ation precision of the rescue vehicle. The tracking system
is adjustable to different environments so as to make the
system applicable to a wide range of real-world scenarios.
The controller allows the USV to navigate to the target
victim location automatically and therefore frees operators
from tedious remote control of the robot, allowing them to
concentrate on more urgent or task-level needs. The system
is actually fielded in 4 rescue scenarios.

Although being proved to be fieldable and useful in real
marine mass casualty search and rescue missions, this paper
is only the preliminary result of this novel approach. Our
system can expand the search and rescue coverage to distant
regions previously inaccessible with pure human power. But
in close water areas where both automation and manual
control are possible, we need to demonstrate our system
is a reliable substitute for human. Clearly human operators
cannot easily drive EMILY in a perfect straight line to the
victims either, but their performance needs to be quantified
and compared with our system. The movement of the UAV
in strong wind should be incorporated into the controller and
possibly taken advantage of in future research.
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