
Human-Robot Co-Transportation with Human Uncertainty-Aware MPC and
Pose Optimization

Al Jaber Mahmud, Amir Hossain Raj, Duc M. Nguyen, Xuesu Xiao, and Xuan Wang

Abstract— This paper proposes a new control algorithm for
human-robot co-transportation based on a robot manipulator
equipped with a mobile base and a robotic arm. The primary
focus is to adapt to human uncertainties through the robot’s
whole-body dynamics and pose optimization. We introduce
an augmented Model Predictive Control (MPC) formulation
that explicitly models human uncertainties and contains extra
variables than regular MPC to optimize the pose of the robotic
arm. The core of our methodology involves a two-step iterative
design: At each planning horizon, we select the best pose of
the robotic arm (joint angle combination) from a candidate
set, aiming to achieve the lowest estimated control cost. This
selection is based on solving an uncertainty-aware Discrete
Algebraic Ricatti Equation (DARE), which also informs the
optimal control inputs for both the mobile base and the robotic
arm. To validate the effectiveness of the proposed approach,
we provide theoretical derivation for the uncertainty-aware
DARE and perform simulated and proof-of-concept hardware
experiments using a Fetch robot under varying conditions,
including different nominal trajectories and noise levels. The
results reveal that our proposed approach outperforms baseline
algorithms, maintaining similar execution time with that do
not consider human uncertainty or do not perform pose
optimization.

I. INTRODUCTION

Collaborative human-robot systems can significantly re-
duce human workloads (Fig. 1). The capability of au-
tonomous robots to adapt to human uncertainties is the key
to determining system operational efficiency and safety [1],
[2]. One frequently encountered task in engineering settings
is object transportation [3]. To employ a human and a mobile
manipulator to perform co-transportation, the key challenges
arise from the uncertainties of human behaviors [4], which
may not adhere strictly to predefined trajectories, and from
the increased control complexity due to the coupling of the
robotic arm and its mobile base [5].

To address these challenges, this paper formulates and
solves a human uncertainty-aware Model Predictive Con-
trol (MPC) tracking problem. Its goal is to derive optimal
control strategies by using robots’ whole-body dynamics
and augmented with pose optimization. Unlike most existing
uncertainty-aware MPC approaches that consider the source
of uncertainty to be from the robot dynamics [6], [7], we
explicitly model and consider human uncertainties in MPC
tracking problems. This approach allows us to estimate their
impact on costs in terms of tracking errors and energy con-
sumption when controlling the mobile base and robotic arm
simultaneously. Building on this, pose optimization enables
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Fig. 1: Human robot co-transportation. The robot needs to
adapt to human uncertainties added to a nominal trajectory.
The board must be horizontal throughout the trajectory,
guaranteeing the carried object’s stability.

the robot to dynamically adjust its joint angles to better
compensate for uncertainties and reduce predicted costs.

Statement of contribution: We study the collaborative
transportation of objects between a human and a robot ma-
nipulator composed of a mobile base and a robotic arm. Our
contributions in this paper are threefold. Firstly, we introduce
a novel modeling approach that incorporates human uncer-
tainties along with the robot’s whole-body dynamics, leading
to the development of a unique human-uncertainty-aware
MPC tracking problem that includes pose optimization. Sec-
ondly, we propose a dual-phase optimization strategy. This
strategy begins with calculating the estimated control costs in
the presence of human uncertainties within a certain planning
horizon, followed by optimization of the robot’s pose through
selection from a set of joint angle combinations. Lastly,
we demonstrate the effectiveness of our method through a
combination of theoretical derivation, simulated experiments,
and a proof of concept hardware demo using a Fetch robot.
We use quantitative comparisons to showcase the advantages
of the approach over existing algorithms that either overlook
human uncertainties or neglect pose optimization.

II. LITERATURE REVIEW

There has been considerable existing literature investi-
gating trajectory tracking using a mobile robot or the end
effector of a robotic arm. For mobile robots, diverse algo-
rithms such as MPC [8], learning-based nonlinear MPC [9],
[10], sliding mode control [11], and adaptive planning can
be employed. These works highlight the inherent challenges
of real-time maneuvering in complex environments, such as
terrain contact [11] and high-speed mobility [9]. On the other
hand, tracking using a robotic arm features algorithms like
Gaussian process-based MPC [12], adaptive time delay con-
trol [13], and model predictive path-following control [14].
These works focus on the high degree of freedom associ-
ated with the mechanical and kinematics characteristics of



robotic arms, and address control problems under complex
task configurations and workspace constraints [15], [16].
When combining a robotic arm with a mobile base, only
a handful of studies have rigorously addressed their compre-
hensive whole-body dynamics control. These studies employ
methodologies such as linear programming [17], constrained
sequential linear quadratic control [18], end-to-end reinforce-
ment learning [19], and nonlinear MPC [20]. These holistic
control mechanisms can significantly expand the operational
workspace of the mobile manipulator. Nonetheless, they
often do not consider external disturbances, particularly the
uncertainties introduced by humans in collaborative tasks.

As part of end-effector control, pose optimization has
been extensively studied for robotic arm manipulation [21].
Instead of simply using forward dynamics to control the
arm, pose optimization considers alternative joint angle
combinations that can achieve the same end-effector po-
sition. This can help to avoid singularities [22], improve
reachability in constrained spaces [23], and enhance con-
trol accuracy [24]. These pose optimization approaches are
often used to overcome static or dynamic environmental
constraints. The efforts to integrate pose optimization into
co-manipulation problems are limited [25], and, similar to
the tracking problem, they are not usually designed to better
compensate for human uncertainties.

Adapting robot responses to align with human uncer-
tainties during collaborative tasks is necessary and presents
challenges in terms of control efficiency and safety. For this
purpose, the integration of reinforcement learning and model-
based control has been substantially used, such as using
a robotic arm to assist humans in specific target activities
through model-based reinforcement learning [26], wood saw-
ing and surface polishing [27], and engaging in collaborative
assembly tasks using Gaussian Process MPC [28]. Some
studies have considered the whole-body dynamics of the
mobile manipulator during co-manipulation or transportation
tasks [29], [30]. While reinforcement learning shows effec-
tiveness in handling unmodeled human uncertainties, it usu-
ally lacks transparency to theoretically ensure performance
guarantees. To address this, robust MPC provides a control
theoretic approach to address uncertainties in MPC problems,
including the consideration of strict safety [31] and physical
constraints [32], and systems with varying parameters [33].
However, these works mainly focus on uncertainties embed-
ded in robot dynamics [6], [7], rather than those arising from
humans. In addition, they do not consider integrating the
MPC formulation with pose optimization to further improve
control performance, which is a key difference from the
problem considered in this paper.

III. PROBLEM STATEMENT AND FORMULATION

In this section, we formulate the problem we aim to
address. We start by introducing a trajectory with human
disturbances, which the robot must follow and adapt to. Then,
we detail the whole body dynamics of the mobile manipula-
tor, composed of both the mobile base and the robotic arm.
Lastly, we mathematically define an MPC tracking problem

that is aware of human uncertainties and incorporates pose
optimization.

Notations: Let Ir denote the r × r identity matrix. Let
diag{a1, a2, · · · , ar} denote a diagonal matrix with ai being
the ith diagonal entry. For a vector x, |x|2 denotes its 2-norm.
For a square matrix M , Tr(M) denotes its trace. We use
M ≻ 0, M ⪰ 0 to denote the matrix is positive definite and
positive semi-definite, respectively. We let ∥x∥2M = x⊤Mx
with M ⪰ 0, which represents a quadratic evaluation of the
vector based on matrix M .

A. Nominal Trajectory and Human Uncertainty

As illustrated in Figure 1, the task is to enable a team
comprising a mobile manipulator and a human to collabo-
ratively transport a board, adhering to a nominal trajectory.
This trajectory defines the desired position and orientation
of the robots’ end-effector in the inertial frame at each time
step t, expressed as rt = [rxt , r

y
t , r

z
t , r

α
t , r

β
t , r

γ
t ]

⊤ ∈ R6 for
t ∈ {0, 1, 2, · · · , T}. Here, rxt , ryt , and rzt represent the end-
effector’s three-dimensional position, while rαt , rβt , and rγt
represent its orientation in terms of roll, pitch, and yaw,
respectively. We assume the board must maintain a horizontal
orientation throughout the cooperative transportation, i.e., ∀t,
rβt = rγt = 0.

Suppose human operators attempt to work with robots
to transport the board following the nominal trajectory, but
human actions are subject to uncertainties. As a result, the
robot must dynamically adjust its movements to compensate
for these disturbances to keep the board horizontal. To tackle
this challenge, we implement a strategy based on receding
horizon tracking, which allows the robot to adapt to human
disturbances continuously [34]. At each control cycle, the
robot aims to track a segment of the trajectory for future H
steps, with each step defined by: k ∈ {0, 1, · · · , H},

r̃(k) = r(k) +D(h+

k∑
τ=0

ϖ(τ)), (1)

with ϖ(τ) ∼ N (0,Σ). Here, D =
[
I3 03×3

]⊤ ∈ R6×3

is a matrix that maps human disturbances onto the nominal
trajectory. We assume that the human only causes positional
disturbances, without affecting the desired roll, pitch, and
yaw of the reference trajectory. Therefore, the last three rows
of D are kept as zeros. The vector h = [hx, hy, hz]⊤ ∈ R3

represents the positional disturbance created by the human
up to the current time in the real world, which can be
directly observed by the robot and should be added to
the nominal trajectory. The term ϖ ∈ R3 represents the
predicted human positional disturbance for future time steps.
We assume the distribution of ϖ is zero mean and follows
a covariance matrix Σ ∈ R3×3 in x, y, z directions. The Σ
is presumed to encapsulate individual human variations and
is assumed to be known a priori. Equation (1) formulates a
human-disturbance-aware trajectory. To track this trajectory
in a receding horizon manner, we introduce the whole-body
dynamics of the mobile manipulator as follows.



Fig. 2: Fetch robot mobile base in the inertial frame. A
shifted frame Ξ based on current robot position.

B. Dynamics of a Mobile Manipulator.

We use a Fetch robot to present modeling details. How-
ever, a similar mechanism is generalizable to a wide class of
mobile manipulator platforms.
Mobile Base. As shown in Fig. 2, the base of the Fetch
mobile robot is equipped with four caster wheels and two
driving wheels. Its discrete-time motion dynamics in the
inertial frame can be represented by a differential drive
model:

sbase(k + 1) = sbase(k) + τ

cos(ϕ(k)) 0
sin(ϕ(k)) 0

0 1

ubase(k) (2)

where sbase = [xbase, ybase, ϕ]
⊤ ∈ R3 represents the x,

y positions and the heading angle of the robot base, both
in the in the inertial frame; ubase = [v η]⊤ represents the
linear and angular velocities of the mobile base in its own
body frame. τ is the discretization time interval.
Robotic Arm. The Fetch robot has a 7-DOF [35] robotic
arm built on its mobile base. For the ease of combining
the dynamics of the base and robotic arm, which will be
discussed in the next subsection, we consider the robot
base heading angle ϕ as one extra freedom for the robotic
arm. This leads to an 8-DOF shown in Fig. 3 [36]. This
definition allows us to represent the end-effector pose in the
Ξ coordinate frame visualized in Fig. 2. Ξ has the same
orientation as the inertial frame, thus, the two frames can
be transformed without rotation. Furthermore, this definition
also makes it easier for us to incorporate angle ϕ into pose
optimization, together with 7 other joint angles.

We represent the end-effector pose of the robotic arm in
Ξ frame by sarm = [parm

⊤ ψarm
⊤] ∈ R6, where parm ∈ R3

denotes the end-effector position in Cartesian coordinates,
and ψarm ∈ R3 denotes the end-effector orientation in Euler
angles. Note that our use of Euler angles is primarily for
simplicity, although we are aware that Euler angles may
potentially lead to singularities [37]. In our application, the
target end-effector orientation is always horizontal to the
ground, i.e., rβt = rγt = 0, which significantly mitigates this
issue. Furthermore, while alternative orientation representa-
tion methods like quaternions or SO(3) could be considered
with complex dynamics matrices, we claim that our main
results remain applicable if these alternative equations are
substituted into the formulations in Section IV.

To study the state transition of sarm, we represent its
forward kinematics equation f(·) using the Jacobian matrix
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Fig. 3: Joint axes configurations of the 8-DOF robotic arm
with DH parameters in frame Ξ.

J(·) ∈ R6×8 derived based on the DH-parameters [38] of
the robotic arm configured in Fig. 3:

sarm(k + 1) = f(θ(k) + τω(k))

≈ sarm(k) + τJ(θ(k))ω(k) (3)

where θ = [ϕ, θ2, θ3, · · · , θ8]⊤ ∈ R8 represents the joint an-
gles including the mobile base heading angle ϕ and the seven
robotic arm angles; and ω = θ̇ = [η, θ̇2, θ̇3, · · · , θ̇8]⊤ ∈ R8

represents the corresponding angular velocities. The Jacobian
matrix can be computed by J(θ(k)) = ∂f(θ)

∂θ

∣∣∣
θ=θ(k)

.

Whole-Body Dynamics. We combine the dynamics for the
base (Equation (2)) and for the robotic arm (Equation (3))
to obtain the linearized whole-body dynamics of the robot’s
end-effector pose in the inertial frame as s ∈ R6. It can be
represented by

s = sarm +

xbase
ybase
04×1

 ,
where the two states can be directly added because sbase is
defined in the inertial frame, sarm is defined in the Ξ frame,
and no rotation is needed for the transition between the two
frames. Consequently, the state update is given by

s(k + 1) = s(k) +B(θ(k))u(k) (4)

with

B(θ(k)) = τ


cos(ϕ(k))

sin(ϕ(k)) J(θ(k))

04×1


where u = [v, ω⊤]⊤ ∈ R9 is the control input combining
the linear velocity of the base and all rotations of the robot.
B(θ(k)) ∈ R6×9 is the input matrix which depends on the
joint angle combinations θ(k). The first column of B(θ(k))
is derived from the linearized motion dynamics of the mobile
base as in (2) and Jacobian matrix comes from dynamics of
the 8-DOF arm model as (3). The second column of (2) is
not used since it has been integrated into the Jacobian matrix.

C. Human Uncertainty Aware MPC with Pose Optimization

Our research problem focuses on effectively tracking a
specified trajectory, denoted as equation (1), subject to the
dynamics of the whole body dynamics (4). We solve this by
introducing a special MPC formulation. Unlike regular MPC,
which simply minimizes the objective function to obtain the
optimal control input sequence within the planning horizon



while tracking the trajectory, our formulation introduces
two enhancements. First, we consider human uncertainty ϖ
embedded in trajectory (1). We estimate its impact on the
cost when optimizing the control strategies. Unlike the robust
MPC in the literature, which considers uncertainties from the
robot dynamics, our formulation considers external uncer-
tainties coming from the human. Second, we consider pose
optimization. In addition to the regular control inputs u(k),
we allow the robot to change its joint angle combination
from θ0 to a new combination θ̄ selected from a candidate
set, if the new θ̄ leads to a lower predicted cost. The rationale
behind this is that given the same end-effector pose, an 8-
DOF robot can have infinitely many feasible joint angle
combinations. If the robot is informed by the future trajectory
and the human uncertainty distribution, it can choose a better
θ̄, i.e., a more desired pose, which induces less future cost.

The discrete-time human uncertainty-aware MPC tracking
with pose optimization can be formulated as follows:

min
u(0:H−1),θ̄∈Θ

J (u(0 : H − 1), θ̄)

≜ Eϖ

[
H∑

k=0

[
s(k)− r̃(k)

]⊤
Q
[
s(k)− r̃(k)

]]

+

H−1∑
k=0

u(k)⊤Ru(k) + κ|θ̄ − θ0|22 (5)

s.t. s(k + 1) = s(k) +B(θ̄)u(k), s(0) = s0

r̃(k) = r(k) +D(h+

k∑
τ=0

ϖ(τ)), ϖ ∼ N (0,Σ)

where u(0 : H−1) = {u(0), · · · , u(H−1)}, Q ∈ R6×6 ⪰ 0,
R ∈ R9×9 ≻ 0 are the weighting matrices for tracking
and input costs, respectively; κ ∈ R+ is the cost weight
for pose optimization. s0 is the current end-effector pose
to initialize each planning phase, and θ0 is the current
joint angle combination. For tractability, similar to prior
works [39], [40], we consider the linearized system with
a fixed B(·) matrix for the robot’s end-effector dynamics
throughout the entire planning horizon. The impact is small
when the planning horizon is short [40]. Finally, we note
that without pose optimization, i.e., θ̄ = θ0 and ignoring
human disturbance, i.e., Σ = 0, then problem (5) degrades
to a regular MPC tracking problem.

IV. MAIN RESULT

To solve the problem formulated in Equation (5), we
observe that the optimal control input sequence, u(0 : H−1),
is influenced by the input matrix B(θ̄), which means it
also relies on the robot’s pose optimization variable, θ̄, as
in Equation (4). Since there are no closed-form solutions
for u(0 : H − 1) for general MPC tracking problems,
optimizing both u(0 : H−1) and θ̄ at the same time presents
a challenge [41]. Our approach to address this is a dual-
phase method. First, we generate a set of candidate joint
angle combinations or θ̄ values. For each θ̄, we theoretically
compute optimal control inputs, u(0 : H − 1), within the

planning horizon and estimate the cost-to-go associated with
it, considering uncertainties caused by humans, referred to
as ϖ. Then, in the second step, we go through candidate
joint angle combinations and choose the one that resulted in
the lowest estimated cost. This will combine the best of both
tracking cost optimization and pose optimization to find the
most efficient θ̄ and u(0 : H − 1).

Following this approach, we start by presenting the result
to solve the optimal control input sequence u(0 : H − 1)
and the optimal cost J ∗ with a fixed θ̄. For presentation
simplicity, let B̄ = B(θ̄), and define the following error
dynamics for (4) by subtracting r̃(k+1) from both sides of
the equation:

e(k + 1) = e(k) + B̄u(k) + r̃(k)− r̃(k + 1) (6)
= e(k) + B̄u(k) + r(k)− r(k + 1)−Dϖ(k + 1)

with e(k) = s(k) − r̃(k) being the tracking error. We
hypothesize that the optimal cost-to-go function follows:

J ∗(e(k), k) = ∥e(k)∥2P (k) + 2e(k)⊤p(k) + c(k) (7)

where, P (k) ∈ R6×6, p(k) ∈ R6, c(k) ∈ R, are unknown
matrices, vectors, and scalars to be determined. The follow-
ing result shows that the assumed solution form is valid, and
the parameters can be computed from a Discrete Algebraic
Ricatti Equation (DARE) [42]. The proof of the theorem is
given in the Appendix.

Theorem 1. Given a B̄, assuming the optimal solution u∗

of (5) yields an optimal cost J ∗ with the form of (7). Then
P (k), p(k), and c(k) can be computed by the following
uncertain-aware DARE:

P (k) = Q+ P (k + 1)− P (k + 1)B̄MP (k + 1) (8a)

p(k) = p(k + 1) + P (k + 1)(r(k)− r(k + 1))

− P (k + 1)B̄MP (k + 1)(r(k)− r(k + 1))

− P (k + 1)B̄Mp(k + 1) (8b)

c(k) = c(k + 1) + ∥r(k)− r(k + 1)∥2P (k+1)

+ Tr(ΣD⊤P (k + 1)D)− ∥P (k + 1)(r(k)

− r(k + 1)) + p(k + 1))∥2BM + 2(r(k)

− r(k + 1))⊤p(k + 1) (8c)

with M = (R+ B̄⊤P (k+1)B̄)−1B̄⊤, terminal conditions:

P (k = H) = Q, p(k = H) = 0, c(k = H) = κ|θ̄ − θ0|22
The corresponding control input

u∗(k)=−M(P (k+1)(e(k)+r(k)−r(k+1))+p(k+1))
(9)

gives the cost in (7) with parameters in (8). □

From Theorem 1 and (9), it can be observed that the
optimal control input u∗(k) does not depend on c(k). How-
ever, c(k) contributes to the computation of optimal cost
J ∗, which impacts the pose selection among the candidates.
More specifically, our two-step solver is summarized in



Algorithm 1: Human-Uncertainty-Aware MPC
Tracking with Pose Optimization

1 Input Nominal trajectory rt; human uncertainty
covariance matrix Σ; current accumulated human
disturbance h; current joint angles θ0.

2 Formulate r̃(k = 0 : H) based on equation (1).
3 Create the joint angles candidate set Θ by sampling

around θ0, also add θ0 to Θ.
4 for each θ̄ ∈ Θ do
5 Compute Jacobian matrix, J(θ̄) = ∂f(θ)

∂θ

∣∣∣
θ=θ̄

.

6 Compute matrix B̄ = B(θ̄) with (4).
7 Solve the MPC by computing solutions for the

uncertain-aware DARE in Theorem 1.
8 Compute the optimal cost J ∗ associated with the

current θ̄ using (7).
9 end

10 Compare the costs J ∗ for all candidate θ̄ and find
the optimal θ̄∗ as pose optimization.

11 Apply the pose optimization to the robot.
12 Reuse the results in step 7 for the selected θ̄∗ and

equation (9) to generate optimal control input
sequence u∗(0 : H − 1), and apply them to the
robot.

Algorithm 1. At the beginning of each MPC horizon, we first
create the joint angles candidate set Θ by randomly changing
multiple joint angles of θ0 with a small radian value. This
should lead to small pose optimization cost κ|θ̄ − θ0|22 and
small changes to the end-effector pose of the robot. For
every θ̄ ∈ Θ, we compute B̄ that defines the control input
matrix of the system dynamics. Then, we use Theorem 1
to compute the estimated optimal cost J ∗ for the current
θ̄. This process is parallelizable to improve computational
efficiency. By exploiting all θ̄ ∈ Θ and the associated J ∗,
we select the best θ̄ and use (9) to obtain the associated
control inputs. Finally, we apply both the pose optimization
and the control inputs to the robot.

Remark 1. In general, the highly non-linear relation be-
tween B(θ̄) and θ̄ makes it computationally infeasible to
systematically find the optimal pose θ̄ for estimated control
cost J ∗. Instead, in Algorithm 1, we employ a sample-based
approach to select a candidate set for pose optimization. This
allows us to numerically search for a pose θ̄ that is better
than θ0 in terms of future control cost. A similar technique
has been used in [43]. Here, increasing the cardinality of
Θ can potentially lead to a better θ̄∗, but also incurs more
computation. As previously mentioned, since the evaluation
of θ̄ can be performed in parallel, the cardinality of Θ can
be chosen based on the robot’s local computational power.
Furthermore, as we will demonstrate in the experiments, if
computation resources are limited, pose optimization does
not necessarily have to be performed at every step. Optimiz-
ing poses periodically over fixed intervals can also improve
tracking performance. Lastly, to make the pose optimizing

more efficient, one may leverage deep learning methods to
determine when a pose optimization is needed [44], and how
a candidate set should be chosen [45].

V. EXPERIMENTS

In this section, we evaluate our proposed Human-
Uncertainty-Aware MPC Tracking with Pose Optimization
algorithm through simulation experiments in Gazebo and
perform proof of concept demonstration using a real fetch
robot. We build the model of a Fetch robot using methods
described in Sec. III with DH parameters [46] for specifying
link lengths, offsets, and twist angles of rotation. The creation
of the robot in the Gazebo environment is based on its URDF
(Unified Robot Description Format) [46]. To simulate human
disturbances, we assume ϖ(k) ∼ N (0,Σ), where Σ = q ·
diag(0.015, 0.025, 0.015) (meters) and q ∈ {0.4, 0.7}. This
reflects the tendency for disturbances to be more pronounced
along the y-axis compared to the x and z-axes, with q being
the strength of these disturbances. Despite our problem-
solving approach being based on the linearized dynamics of
the system, during the simulations, we continuously update
the robot’s state using real physics and determine the end-
effector’s position through forward kinematics calculations.

We test our algorithm using four different nominal trajec-
tories, denoted as A, B, C, and D visualized in Fig. 4(a-d),
respectively. Each trajectory is discretized into 500 discrete
points, with a time interval of τ = 0.1 seconds. We assume
the robot and the human positions are initialized by holding
a board horizontally. The parameters used for solving the
problem (5), are selected to be H = 8, R = I9, and
κ = 1. We experiment with two different settings for the
Q parameter, choosing either Q = 1000 · I6 or Q =
500 · I6, to reweigh the importance of tracking error on the
overall cost. These parameter variations help to validate our
proposed algorithm’s performance under different conditions
over other baseline algorithms.

Our experiments follow Algorithm 1, we repeat the MPC
planning every step using the current end-effector pose as the
initial state, and apply the first control signal in the planned
trajectory to actuate the system. In each planning horizon,
we chose twelve candidate poses in Θ. While the proposed
MPC-based algorithm seeks to minimize an expected cost
over a horizon H , we define the true system cost over the
entire trajectory as:

Ctotal =

T∑
t=1

e(t)⊤Qe(t) + u(t)⊤Ru(t) + κ|θ̄(t)− θ(t)|22,

which takes into account the costs for the robot’s end effector
tracking error, control input, and pose optimization, T is
the total number of time steps. We compare our proposed
approach (PO-HU: considering pose optimization and human
uncertainty) with two baselines: one approach with No Pose
Optimization but considering Human Uncertainty (NPO-HU)
and another one with Pose Optimization but Not considering
Human Uncertainty (PO-NHU). Note that we do not need to
evaluate the no pose optimization and no human uncertainty



NoNominal Trajectory No NoTracking : NPO-HU Tracking : PO-NHUTracking : PO-HU

(a) Trajectory 𝒜 (b) Trajectory ℬ (c) Trajectory 𝒞 (d) Trajectory 𝒟

Fig. 4: All trajectories with human disturbances, Q = 1000 · I6, q = 0.4. Tracking performance is represented by dot clouds
over 10 trials.

(NPO-NHU) case, as it is equivalent to NPO-HU. This
equivalence arises because human uncertainty with zero
mean does not affect the control inputs (but only the expected
control cost), as shown in Equation (9).

The dot clouds in Fig.4 illustrate the comparative tracking
performance across four distinct trajectories on the x-y and
x-z planes, with the weighting matrix Q = 1000 · I6 and
q = 0.4. A numerical comparison is further provided in
Table I, which shows the average total cost Ctotal of different
algorithms over 10 trials. Additionally, different from PO-
HU, which performs pose optimization at every time step,
we also introduce a periodic pose optimization (pPO-HU)
that performs pose optimization every 5 time steps. This
helps to reduce the computational burden when applied to
low-cost devices. In terms of hardware implementation, due
to the lack of global localization, we haven’t yet finished the
complete hardware implementation. However, for proof of
concept purposes, all the trajectories computed from Gazebo
visualized in Fig. 4, have been executed and successfully re-
produced on our hardware platform to justify their feasibility.
The complete and independent hardware implementation is
our direct future work.

TABLE I: Comparison of Ctotal across Different Algorithms

Traj Q q PO-HU pPO-HU NPO-HU PO-NHU

A
1000I6

0.4 1019.81 1023.15 1119.29 1057.35
0.7 1325.96 1337.11 1431.20 1370.91

500I6
0.4 856.87 863.12 1075.43 914.19
0.7 1027.91 1032.42 1160.69 1070.57

B
1000I6

0.4 970.99 972.71 1189.59 1231.87
0.7 1161.31 1378.59 1520.03 1500.54

500I6
0.4 856.07 927.54 5875.60† 2123.53‡

0.7 906.92 1140.84 1938.88 † 2515.04‡

C
1000I6

0.4 686.94 769.55 1932.83† 1102.95
0.7 1151.33 1292.57 2342.11† 2384.16‡

500I6
0.4 829.59 835.64 851.60 852.53
0.7 978.52 986.46 1013.69 1017.27

D
1000I6

0.4 2306.64 2540.73 3759.09† 2968.25
0.7 3782.70 3943.75 8694.57† 7220.29‡

500I6
0.4 2013.31 2041.27 2261.32 2209.01
0.7 2293.11 2481.39 5612.76† 4301.46

It can be read from Fig. 4 that in all cases, the pro-
posed approach (PO-HU) outperforms the other two in terms
of tracking error. Especially for more complex trajectories
B, C,D, the result of PO-HU closely follows the reference
trajectories, whereas the other two baseline algorithms devi-
ate a lot. This verifies the effectiveness of the proposed algo-
rithm. Regarding the total cost, the advantage of the proposed
algorithm is justified by the results in Table I. Specifically,
when comparing the columns, we use † in NPO-HU, and
‡ in PO-NHU to highlight the entries where the differences
are significant. The fewer highlighted entries in PO-NHU
imply that pose optimization has a greater impact on the
total cost than the characterization of human uncertainty.
Additionally, when performing pose optimization every five
time steps (pPO-HU), it performs better than the other two,
although having a small gap compared to performing pose
optimization at every time step (PO-HU). We also observe
that the cost associated with trajectory D is higher than that
for other trajectories. This can be attributed to the inherent
complexity and the sharp turns in trajectory D, as depicted
in Fig. 4.
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Fig. 5: Accumulated cost comparison for trajectory C, with
Q = 1000 · I6, R = I9, q = 0.4.

Figure 5 visualizes the accumulated cost over time and the
cost at each time step for trajectory C, with Q = 1000 · I6



and q = 0.4. A comparison of cost and peaks reveals the
effectiveness of our algorithm in navigating complex trajec-
tory segments, particularly during sharp turns. Furthermore,
it is observed that towards the end of the trajectory, the costs
associated with NPO-HU explode because the robot admits
a bad pose and can hardly reach and track the remaining
trajectory. In contrast, the costs for the methods incorporating
Pose Optimization, namely PO-HU and PO-NHU, remain
relatively stable.

We use Fig. 6 to record the average execution time of the
proposed algorithm for different planning horizons, averag-
ing over 100 trials. Steps (4-9) of the proposed algorithm
can be fully parallelized, thus the computation time for pose
optimization only increases slightly compared to the case
without pose optimization, as long as the size of the set
|Θ| = 12 is smaller than the number of computing threads.
(The test computer uses an AMD 5975XW.) Furthermore,
we observe that the execution time for each algorithm
increases only mildly across different values of H . The main
computation time is spent on the one-time computation of
the Jacobian matrix. The minor increase in execution time
is due to more iterations in solving the DARE (cf. equation
(8)). This concludes that our proposed PO-HU method does
not introduce significant extra execution time compared with
other baseline algorithms. This further justifies the feasibility
of the complete hardware real-time implementation in our
future work.
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Fig. 6: Execution time comparison with different planning
horizon, with Q = 1000 · I6, R = I9, q = 0.4, |Θ| = 12.

VI. CONCLUSIONS AND FUTURE WORKS

We studied the control of a mobile manipulator to perform
human-robot co-transportation tasks. By modeling human
uncertainties and the whole-body dynamics of the robot, we
formulated a new human-uncertainty-aware MPC tracking
problem with pose optimization. The key challenge arose
from the need to simultaneously optimize the joint angle
combination for pose optimization and the control inputs
to minimize the cost. To address this, we proposed an
algorithm with a two-step iterative design, equipped with
an inner loop that computes an uncertainty-aware DARE
to estimate the control cost, and an outer loop that selects
the best pose with the minimum cost from a candidate set.
The correctness and effectiveness of the proposed approach
have been validated through both theoretical derivation and
simulated experiments, respectively. Our simulation used a
Fetch robot to perform co-transportation tasks under varying
conditions. The results showed that the proposed approach
has advantages in terms of tracking accuracy and energy

consumption while maintaining similar execution time, over
baseline algorithms. Future work will include the com-
plete implementation of our algorithm on hardware and the
generalization of the algorithm to multi-human multi-robot
collaborative tasks.

APPENDIX

Proof of Theorem 1:

Integrating the error update (6) into the optimal cost (7),
one has

J ⋆(e(k), k) = min
u(k)

J (e(k), k))

= min
u(k)

[Eϖ[∥e(k)∥2Q + ∥u(k)∥2R + J ⋆(e(k + 1)), k + 1)]]

= min
u(k)

[Eϖ[∥e(k)∥2Q + ∥u(k))∥2R

+ ∥e(k) + B̄u(k) + r(k)− r(k + 1)∥2P (k+1)

+ Tr(ΣD⊤P (k + 1)D) + 2(e(k) + B̄u(k)

+ r(k)− r(k + 1))⊤p(k + 1) + c(k + 1)]] (10)

where the elimination of terms follows from E(ϖ(k+1)) =
0. Since the control input minimizes cost at each time step,
the optimality condition ∂J ∗(e(k),k)

∂u(k) = 0 yields

Ru(k) + B̄⊤P (k + 1)(e(k) + B̄u(k) + r(k)− r(k + 1))

+ B̄⊤p(k + 1) = 0 (11)

Thus, for each time-step k, the control inputs follows:

u∗(k)=−M(P (k+1)(e(k)+r(k)−r(k+1))+p(k+1))
(12)

with M defined in Theorem (1). Bring this back to (10) and
reusing condition (11) by left multiplying u(k)⊤ yields

J ∗(e(k), k) = ∥e(k)∥2[Q+P (k+1)−P (k+1)B̄MP (k+1)]

+ 2e(k)⊤
[
p(k + 1)− P (k + 1)B̄(Mp(k + 1)

− P (k + 1)B̄MP (k + 1)(r(k)− r(k + 1)

+ P (k + 1)(r(k)− r(k + 1))
]

+ c(k + 1) + ∥r(k)− r(k + 1)∥P (k+1)

+ Tr(ΣD⊤P (k + 1)D)− ∥P (k + 1)(r(k)

− r(k + 1)) + p(k + 1))∥2BM + 2(r(k)

− r(k + 1))⊤p(k + 1) (13)

Comparing (13) with (7), we have the DARE for P (k),
p(k), and c(k). The terminal conditions are obtained by
considering J ∗(e(H), k = H) for (5), where P (H) = Q
and c(H) is the constant pose optimization cost.
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