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Abstract— Deep reinforcement learning (RL) has brought
many successes for autonomous robot navigation. However,
there still exists important limitations that prevent real-world
use of RL-based navigation systems. For example, most learning
approaches lack safety guarantees; and learned navigation
systems may not generalize well to unseen environments.
Despite a variety of recent learning techniques to tackle these
challenges in general, a lack of an open-source benchmark
and reproducible learning methods specifically for autonomous
navigation makes it difficult for roboticists to choose what
learning methods to use for their mobile robots and for learning
researchers to identify current shortcomings of general learning
methods for autonomous navigation. In this paper, we identify
four major desiderata of applying deep RL approaches for
autonomous navigation: (D1) reasoning under uncertainty, (D2)
safety, (D3) learning from limited trial-and-error data, and (D4)
generalization to diverse and novel environments. Then, we
explore four major classes of learning techniques with the
purpose of achieving one or more of the four desiderata:
memory-based neural network architectures (D1), safe RL (D2),
model-based RL (D2, D3), and domain randomization (D4). By
deploying these learning techniques in a new open-source large-
scale navigation benchmark and real-world environments, we
perform a comprehensive study aimed at establishing to what
extent can these techniques achieve these desiderata for RL-
based navigation systems.

I. INTRODUCTION

Autonomous robot navigation, i.e., moving a robot from
one point to another without colliding with any obstacle,
has been studied by the robotics community for decades.
Classical navigation systems [1], [2] can successfully solve
such navigation problem in many real-world scenarios, e.g.,
handling noisy, partially observable sensory input but still
providing verifiable collision-free safety guarantees. How-
ever, these systems require extensive engineering effort,
and can still be brittle in challenging scenarios, e.g., in
highly constrained environments. This is reflected by a recent
competition (The BARN Challenge [3]) held in ICRA 2022,
which suggests that even experienced roboticists tend to
underestimate how difficult navigation scenarios are for real
robots. Recently, data-driven approaches have also been used
to tackle the navigation problem [4] thanks to advances in the
machine learning community. In particular, Reinforcement
Learning (RL), i.e., learning from self-supervised trial-and-
error data, has achieved tremendous progress on multiple
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fronts, including safety [5]–[7], generalizability [8]–[11],
sample efficiency [12], [13], and addressing temporal data
[14]–[16]. For the problem of navigation, learned naviga-
tion systems from RL [17] have the potential to relieve
roboticists from extensive engineering efforts [18]–[22] spent
on developing and fine-tuning classical systems. Moreover,
a simple case study conducted in five randomly generated
obstacle courses where classical navigation systems often
fail shows that a RL-based navigation has the potential to
achieve superior behaviors in terms of successful collision
avoidance and goal reaching (Fig. 1 left).

Despite such promising advantages, learning-based nav-
igation systems are far from finding their way into real-
world robotics use cases, which currently still rely heavily
on their classical counterparts. Such reluctance in adopting
learning-based systems in the real world stems from a
series of fundamental limitations of learning methods, e.g.,
lack of safety, explainability, and generalizability. To make
things even worse, a lack of well-established comparison
metrics and reproducible learning methods further obfuscates
the effects of different learning approaches on navigation
across both the robotics and learning communities, making
it difficult to assess the state of the art and therefore to adopt
learned navigation systems in the real world.

To facilitate research in developing RL-based navigation
systems with the goal of deploying them in real-world
scenarios, we introduce a new open-source large-scale nav-
igation benchmark with a variety of challenging, highly
constrained obstacle courses to evaluate different learning
approaches, along with the implementation of several state-
of-the-art RL algorithms. The obstacle courses resemble
highly-constraint real-world navigation environments (Fig.
1 right), and present major challenges to existing classical
navigation systems, while RL-based navigation systems have
the potential to perform well in them (Fig. 1 left).

We identify four major desiderata that ought to be fulfilled
by any learning-based system that is to be deployed: (D1)
reasoning under uncertainty of partially observed sensory
inputs, (D2) safety, (D3) learning from limited trial-and-
error data, and (D4) generalization to diverse and novel
environments. By deploying four major classes of learning
techniques: memory-based neural network architectures, safe
RL, model-based RL, and domain randomization, we perform
extensive experiments and empirically compare a large range
of RL-based methods based on the degree to which they
achieve each of these desiderata. Moreover, by deploying six
selected navigation systems in three qualitatively different
real-world navigation environments, we investigate to what
degree the conclusions drawn from the benchmark can be
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Fig. 1: Left: Success rate of two classical navigation systems, DWA [2] (red) and E-band [1] (blue), and vanilla end-to-end
RL-based (green) navigation systems (individually trained) in five randomly generated difficult obstacle courses. The insets
at the top show top-down views of the five obstacle courses. Right: Navigation environments in the real world (left) and the
proposed benchmark (right) are similar to the robot perception system (e.g., white/red laser scans and cyan/purple costmaps).

applied to the real world. Supplementary videos and material
for this work are available on the project webpage.1

II. DESIDERATA FOR LEARNING-BASED NAVIGATION

In this section, we introduce four desiderata for learning-
based autonomous navigation systems and briefly discuss the
learning techniques as their corresponding solutions.

(D1) reasoning under uncertainty of partially observed
sensory inputs. Autonomous navigation without explicit
mapping and localization is usually formalized as a Partially
Observable Markov Decision Process (POMDP), where the
agent produces the motion of the robot only based on limited
sensory inputs that are usually not sufficient to recover the
full state of the navigation environment. Most RL approaches
solve POMDPs by maintaining a history of past observations
and actions [14], [15]. Then, neural network architectures
like Recurrent Neural Networks (RNNs) that process sequen-
tial data are employed to encode history and address partial
observability. In this study, we investigate various design
choices of history-dependent architectures.

(D2) safety. Even though in some cases deep RL methods
achieve comparable performance to classical navigation, they
still suffer from poor explainability and do not guarantee
collision-free navigation. The lack of safety guarantee is a
major challenge preventing RL-based navigation from being
used in the real world. Prior works have addressed this
challenge by formalizing the navigation as a multi-objective
problem that treats collision avoidance as a separate objective
from reaching the goal and solving it with Lagrangian or
Lyapunov-based methods [5]. For simplicity, we only explore
Lagrangian method and investigate whether explicitly treat
safety as a separate objective leads to safer and smoother
learned navigation behavior.

(D3) learning from limited trial-and-error data. Al-
though deep RL approaches can alleviate roboticists from
extensive engineering effort, a large amount of data is
still required to train a typical deep RL agent. However,
autonomous navigation data is usually expensive to collect
in the real world. Therefore, data collection is usually con-
ducted in simulation, e.g., in the Robot Operating System
(ROS) Gazebo simulator, which provides an easy interface
with real-world robots. However, simulating a full navigation
stack from perception to actuation is more computationally

1https://cs.gmu.edu/ xiao/Research/RLNavBenchmark/

expensive compared to other RL domains, e.g., MuJuCo or
Atari games [23], [24], which presents a high requirement
for sample efficiency. Most prior works have used off-
policy RL algorithms to improve sample efficiency with
experience replay [25], [26]. In addition, model-based RL
methods can explicitly improve sample efficiency, and are
widely used in robot control problems. In this study, we
compare two common classes of model-based RL method
[12], [13] combined with an off-policy RL algorithm, and
empirically study to what extent model-based approaches
improve sample efficiency when provided with different
amounts of data.

(D4) generalization to diverse and novel environments.
The ultimate goal of deep RL approaches for autonomous
navigation is to learn a generalizable policy for all kinds
of navigation environments in the real world. A simple
strategy is to train the agent in as many diverse navigation
environments as possible or domain randomization, but it is
unclear what is the necessary amount of training environ-
ments to efficiently achieve good generalization. Utilizing
the large-scale navigation benchmark proposed in this paper,
we empirically study the dependence of generalization on
the number of training environments.

III. NAVIGATION BENCHMARK

This section details the proposed navigation benchmark
for RL-based navigation systems, which aims to provide a
unified and comprehensive testbed for future autonomous
navigation research. First, Sec. III-A discusses the difference
between the proposed benchmark and existing navigation
benchmarks. In Sec. III-B and III-C, the navigation task is
formally defined and formulated as a POMDP. More detailed
background of MDP and POMDP can be found on the
project webpage. Finally, Sec. III-D introduces simulated and
real-world environments that benchmark different aspects of
navigation performance.

A. Existing Navigation Benchmarks

Our proposed benchmark differs from existing benchmarks
in three aspects: (1) high-fidelity physics: the navigation
tasks are simulated by Gazebo [27], which is based on realis-
tic physical dynamics and therefore tests motion planners that
directly produce low-level motion commands, i.e., linear and
angular velocies, in contrast to high-level instructions such as
turn left, turn right, move forward [28], [29]. In other words,
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we focus on “how to navigate” (motion planning), instead of
“where to navigate” (path planning); (2) ROS integration:
our benchmark is based on ROS [30], which allows seamless
transfer of a navigation method developed and benchmarked
in simulation directly onto a physical robot with little (if
any) effort; and (3) collision-free navigation: the benchmark
includes both static and dynamic environments, and requires
collision-free navigation, whereas other benchmarks assume
that either collisions are possible [29] or collision-avoidance
will be addressed by other low-level controllers out of the
scope of the benchmark [28]. A special case is the photo-
realistic interactive Gibson benchmark by Xia et. al. [31],
which intentionally allows physical interaction with objects
(e.g., pushing) and therefore pose no challenges to the
collision-avoidance system.

B. Navigation Problem Definition

Definition 1 (Robot Navigation Problem). Situated within
a navigation environment e which includes information of
all the obstacle locations at any time t, a start location
(xi, yi), a start orientation θi, and a goal location (xg, yg),
the navigation problem Te is to maximize the probability p
of a mobile robot reaching the goal location from the start
location and orientation under a constraint on the number
of collisions with any obstacle C < 1 and a time limit
t < Tmax.

A navigation problem can be formally defined as above.
Given the current location (xt, yt), the robot is considered to
have reached the goal location if and only if its distance to
the goal location is smaller than a threshold, dt < ds, where
dt is the Euclidean distance between (xt, yt) and (xg, yg),
and ds is a constant threshold.

C. POMDP Formulation

A navigation task Te can be formulated as a POMDP
conditioned on a navigation environment e, which can be
represented by a 7-tuple (Se, Ae, Oe, Te, γe, Re, Ze) . In this
POMDP, the state st ∈ Se is a 5-tuple (xt, yt, θt, ct, e) with
xt, yt, θt the two-dimensional coordinates and the orientation
of the robot at time step t, ct a binary indicator of whether
a collision has occurred since the last time step t− 1, and e
the navigation environment. The action at = (vt, ωt) ∈ Ae

is a two-dimensional continuous vector that encodes the
robot’s linear and angular velocity. The observation ot =
(χt, x̄t, ȳt) ∈ Oe is a 3-tuple composed of the sensory input
χt from LiDAR scans and the relative goal position (x̄t, ȳt)
in the robot frame. The observation model Z : S → O maps
the state to the observation. The reward function for this
POMDP is defined as follows:

Re(st, at) = +bf ·1(dt < ds)+bp ·(dt−1−dt)−bc ·ct, (1)

where 1(dt < ds) is the indicator function of reaching
the goal location, dt is the Euclidean distance to the goal
location, and bf , bp, bc are the coefficient constants. In this
reward function, the first term is the true reward function
that assigns a positive constant bf for the success of an

Fig. 2: Three types of navigation environments: static
(left), dynamic box (middle), and dynamic-wall
(right). The red squares mark the obstacle fields, and
the yellow arrows mark the direction of navigation. In
dynamic-wall, the green (blue) arrows indicate the case
when the two walls are moving apart (together). In dynamic
box, the red arrows indicate the velocities of obstacles.

agent, which matches with the objective of the navigation
task in Definition 1. The second and third terms are auxiliary
rewards that facilitate the training by encouraging local
progress and penalizing collisions.

We perform a grid search over different values of the
coefficients in this reward function, and the result shows
that the auxiliary reward term (dt−1 − dt) is necessary for
successful training, and a much smaller coefficient bp relative
to bf can lead to a better asymptotic performance. The agent
can learn without the penalty reward for collision (bc = 0),
but a moderate value of bc can improve the asymptotic
performance and speed up training. For all the experiments
in this paper, we fix the coefficients as bf = 20, bp = 1 and
bc = 4.

In our experiments, the RL algorithm solves a multi-task
RL problem where the tasks are randomly sampled from
a task distribution Te ∼ p(Te). Here the task distribution
p(Te) := U({ei}Ni=1) is a uniform distribution on a set of
N navigation environments {ei}Ni=1. The overall objective
of this multi-task RL problem is to find an optimal policy
π∗ = maxπ ETe∼p(Te),τt∼π

[∑∞
t=0 γ

tRe(st, at)
]
.

D. Navigation Environments

The navigation is performed by a ClearPath Jackal
differential-drive ground robot in simulated by the Gazebo
simulator. More details of the robot and simulation can be
found on the project webpage. Each environment in this
benchmark will have a navigation system navigating the
robot through a 10m navigation path that passes through
a highly constrained obstacle course. Walls are placed at
three edges of a square so that passing through the obstacle
field is the only path to the goal location (see Fig. 2).
The benchmark includes 300 static environments, 100
dynamic-box environments, and 100 dynamic-wall
environments. The static environments contains a
diverse set of obstacle course covering a large range of
difficulty levels from easy to hard. A dynamic-box
environment has small boxes with random shapes and
velocities to test the system’s immediate reactions to
small moving obstacles. A dynamic-wall has two
walls moving oppositely that requires the system to make
a longer-term decision of whether to pass or wait. The
detailed procedures of generating these environments can
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Fig. 3: Real-world benchmark-like (top-right), in-door
highly-constrained (top-left), and large-scale (bottom) envi-
ronments. The yellow curves mark the paths of navigation.

be found on the project webpage. We randomly select 50
environments from each type as the test sets, which are
denoted as static-test, dynamic-box-test, and
dynamic-wall-test. The remaining environments are
denoted as static-train, dynamic-box-train,
and dynamic-wall-train respectively. To study
the effect of randomization, static-train is further
separated as static-train-5, static-train-10,
static-train-50, static-train-100, and
static-train-250 by randomly sampling 5, 10,
50, 100, and all 250 environments from static-train.

To test the sim-to-real transferability of the policies learn-
ing with different techniques, the navigation systems are
deployed in three qualitatively different static navigation
environments including a benchmark-like environment (Fig.
3 left), an indoor highly-constrained environment (Fig. 3
right), and a large-scale environment of 30 meters in length.
We denote them as real-world-1, real-world-2, and
real-world-3 respectively.

IV. EXPERIMENTS

In this section, we present experimental results of each
studied technique to achieve the proposed desiderata in Sec.
II. We implement distributed training pipelines (similar to
[21]) of different RL algorithms including TD3 [32], SAC
[33], and DDPG [34]. They perform similarly in the study
of different neural network architectures. For simplicity, all
the experiments mentioned in this section use TD3 combined
with the corresponding techniques, and all the data points are
averaged over three independent runs.

A. Memory-based Neural Network Architectures (D1)

To benchmark the performance of different neural network
(NN) architectures, deep RL policies represented by archi-
tectures of Multilayer Perceptron (MLP), One-dimensional
Convolutional Neural Network (CNN), Gated Recurrent
Units (GRU), and Transformer with history length of 4
and 8 are trained in static-train-50, and the two
types of dynamic environments dynamic-box-train

and dynamic-wall-train from Sec. III-D. After train-
ing, the policies are tested in their corresponding test sets.
In addition, MLP with history length of one is added as a
memory-less baseline. Table I shows the success rates of
policies with different architectures and history lengths eval-
uated in static-test ( left), dynamic-wall-test
(middle) and dynamic-box-test respectively.

Memory-based NNs only marginally improve navi-
gation performance in static environments. In Table I,
the policy represented by Transformer with a history length
of 4 shows the best success rate of 68%, with a slightly
worse success rate of 65% achieved by the baseline MLP.
Additionally, a monotonic decrease in success rate with
increasing history length is observed in each tested NN
architecture. For example, a 32% drop in the success rate
of Transformer is shown by increasing the history length
from 4 to 8. One possible explanation is that, if only few
past observations are useful to make the decision, including
more history will make it more difficult to learn a generalized
policy in this very diverse training set.

Memory is essential when possible catastrophic failures
will happen by making the wrong long-term decisions.
Memory usually matters for dynamic environments when a
single time frame is not sufficient to estimate the motion
of obstacles. Surprisingly, in dynamic-box where the
dynamic obstacles are completely random, the memory-
based NN architectures do not outperform the memory-less
baseline. On the other hand, in dynamic-wall with a
manually designed dynamic challenge, the best success rate
of 82% is observed in GRU with a history length of 4,
which improves about 15% over the non-memory baseline.
During our deployment of the policies, we observe that, in
dynamic-box even though the memory-less agent does not
estimate the motion and adjust its plan in advance, it tends
to perform safely and avoids the obstacles when they get
close enough. This simple strategy works surprisingly well
and achieves similar success rate as the memory-based poli-
cies. However, this strategy does not work in the manually
designed dynamic challenges like dynamic-wall where
the agent has to estimate the motion of the obstacles to pass
safely.

B. Safe RL (D2)

To investigate to what extent safe RL methods can help
to improve safety, a TD3 agent with the Lagrangian-based
safe RL method is trained in static-train-50, and then
tested in static-test. The policy is represented by a
MLP with its input containing only one history length. Table
II shows the success rate, average survival time, and average
traversal time of the safe RL agent trained with Lagrangian
method and a baseline MLP agent tested in static-test.
We define survival time as the time cost of an unsuccessful
episode (collision or exceeding a time limit of 80s). Traversal
time, instead, is the time cost of a successful episode. With
the same level of success rate, a longer survival time means
that the agent tends to, at least, avoid collisions if it cannot
succeed. To compare the safe RL method with classical
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Success rate (%) (↑) static env. dynamic-box env. dynamic-wall env.

H = 1 H = 4 H = 8 H = 1 H = 4 H = 8 H = 1 H = 4 H = 8

MLP 65± 4 57± 7 42± 2 50± 5 35± 2 46± 3 67± 7 72± 1 69± 4
GRU - 51± 2 43± 4 - 48± 4 45± 1 - 82 ± 4 78± 5
CNN - 55± 4 45± 5 - 42± 5 40± 1 - 63± 3 43± 3
Transformer - 68 ± 2 46± 3 - 52 ± 1 44± 4 - 33± 28 15± 13

TABLE I: (D1) Success rate (%) (↑) of policies trained with different neural network architectures and history lengths. H
is the history length of the memory. Bold font indicates the best success rate for each type of environment.

Methods Baseline (model-free) Lagrangian method MPC (model-based) DWA TEB

Success rate (%) (↑) 65± 4 74± 2 70± 3 82 70

Survival time (s) (↑) 8.0± 1.5 16.2± 2.5 55.7± 4.9 62.7 26.9
Traversal time (s) (↓) 7.5 ± 0.3 8.6± 0.2 24.7± 2.0 35.6 26.9

TABLE II: (D2) Success rate (↑), survival time (↑), and traversal time (↓) of policies trained with Lagrangian method, MPC
with probabilistic transition model, and DWA. The bold font indicates the best number achieved for each type of metric.

navigation systems which are believed to have better safety,
we also add evaluation metrics from a classical navigation
stack with the Dynamic Window Approach (DWA) [2] local
planner.

Lagrangian method reduces the gap between training
and test environments. When deployed in the training
environments, both the baseline MLP and the safe RL
method achieves about 80% success rate. However, in the test
environments, the Lagrangian method has a better success
rate of 74% compare to 65% by the baseline MLP. We
hypothesize that the safety constraint applied by the safe
RL methods forms a way of regularization, and therefore,
improves the generalization to unseen environments.

Lagrangian method increases the average survival time
in failed episodes. As expected, the Lagrangian method
increases the average survival time by 8.2s compared to
the baseline MLP at a cost of 1.1s longer average traversal
time. However, such improved safety are still worse than the
classical navigation systems given the best survival time of
88.6s achieved by DWA.

C. Model-based RL (D2 and D3)

To explore how the model-based approaches help with
the autonomous navigation tasks, we implement Dyna-style,
MPC, and MBPO, and evaluate the methods in static en-
vironments. The transition models are either represented by
a deterministic NN or a probabilistic NN that predicts the
mean and variance of the next state. During the training
in static-train-50, the policies are saved when 100k,
500k and 2000k transition samples are collected, then tested
in static-test. The success rates of these policies are
reported in Table IV.

Model-based methods do not improve sample effi-
ciency. As shown in the second and third columns in Table
IV, better success rates of 13% and 58% are achieved by the
baseline MLP method provided by limited 100k and 500k
transition samples respectively. In addition, Higher success
rates at 500k transition samples are observed in probabilistic
models compared to their deterministic counterparts, which
indicates a more efficient learning with probabilistic transi-
tion models. Notice that MBPO exploits more heavily on

the model compared to the Dyna-style method, which leads
to much worse asymptotic performance (about 20% success
rate in the end).

Model-based methods with probabilistic dynamic mod-
els improve the asymptotic performance. In the last
column of Table IV, both Dyna-style and MPC with proba-
bilistic dynamic models achieve slightly better success rates
of 70% compared to 65% in the baseline MLP method
when sufficient transition samples of 2000k are given to the
learning agent.

The MPC policy performs conservatively when de-
ployed in unseen test environments and shows a better
safety performance. The safety performances of MPC poli-
cies with probabilistic dynamic models are also tested (see
Table II). We observe that the agents with MPC policies
navigate very conservatively with an average traversal time of
24.7s, which is about two times more than the MLP baseline.
In the meantime, MPC policies achieve improved safety with
the best survival time of 55.7s among the RL-based methods.

D. Domain Randomization (D4)

To explore how model generalization depends on the
degree of randomness in the training environments, baseline
MLP policies with one history length are trained in the
environment sets with 5, 10, 50, 100, and 250 training
environments. The trained policies are tested in the same
static-test. To investigate the performance gap be-
tween training and test, the policies trained with 50, 100, and
250 environments are also tested on static-train-50,
which is part of their training sets. Fig 4 shows the success
rate of policies trained with different number of training
environments.

The generalization to unseen environments improves
with increasing number of training environments. As
shown in Fig. 4, the performances on the unseen test en-
vironments monotonously increase from 43% to 74% with
the number of training environments increasing from 5 to
250. Moreover, the gaps between training and test environ-
ments gradually shrink by adding more training environments
provided by that the polices are robust enough to maintain
similar performances of about 80% on the training environ-
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Fig. 4: (D4) Success rate (%) of
policies trained with different num-
ber of training environments.

H # envs real-world-1 real-world-2 real-world-3
traversal time (↓) (# successful trials (↑) / total # trials)

MLP 1 50 6.9 (1/3) 10.6 (1/3) N (0/3)
MLP 1 250 4.6± 0.8 (3/3) 6.6 ± 0.6 (3/3) 22.6 ± 0.5 (3/3)
Transformer 4 50 6.1± 0.4 (3/3) 6.1± 0.1 (2/3) 20.5± 2 (2/3)
Lagrangian 1 50 4.4 ± 0.6 (3/3) 7.1± 0.1 (2/3) 26.2 (1/3)
MPC 1 50 13.2± 0.7 (3/3) 24.8± 3.7 (3/3) N (0/3)
DWA - - 16.2± 0.7 (3/3) 35.2± 8.2 (2/3) 66.9± 0.6 (3/3)

TABLE III: Physical experiments. The table shows the traversal time (s) (↓) and the
number of successful trials (↑) of 5 RL-based navigation systems and a classical
navigation system (DWA) evaluated in three real-world environments. The bold font
indicates the best traversal time when all three trials are successful.

ments.

Transition samples 100k 500k 2000k

MLP 13 ± 7 58 ± 2 65± 4
Dyna-style deterministic 8± 2 30± 10 66± 5
MPC deterministic 0± 0 21± 10 62± 3
Dyna-style probabilistic 0± 0 48± 4 70 ± 1
MPC probabilistic 0± 0 45± 4 70 ± 3
MBPO 0± 0 0± 0 21.9± 3

TABLE IV: (D3) Success rate (%) (↑) of policies trained
with different model-based methods and different number of
transition samples. The bold font indicates the best success
rate for each number of transition samples.

E. Physical experiments

To study the consistency of the above observations in
simulation and the real world, we deploy one baseline MLP
policy, one best policy for each studied desideratum, and one
classical navigation system (DWA [2]) in the three real-world
environments introduced in Sec. III-D. Each deployment is
repeated three times, and the average traversal time and
the number of successful trials are reported in Table. III.
Even though the best memory-based policy, transformer
architecture with 4 history length, was only marginally
better than the baseline MLP in simulation, in the real
world it can navigate very smoothly and fails only once
in real-world-2 and real-world-3, while baseline
MLP fails most of the trials in all the environments including
the benchmark-like environment. One possible reason for
this is that simulations are typically more predictable than
the real world. Therefore, it is particularly important to use
historical data in the real world to estimate the environment
and current states of the robot. Similarly, MLP policy trained
with 250 environments can successfully navigate in all
the environments without any failures, while baseline MLP
trained with 50 environments fails most of the trials. Safe RL
improves the chances of success in all the environments and
can navigate more safely by performing backups and small
adjustments of robots’ poses. Similar to the simulation, MPC
navigates very conservatively and succeeds in all the trials in
real-world-1 and real-world-2, but has much more
difficulty generalizing to large-scale real-world-3.

V. CONCLUSION

In this section, we discuss the conclusions we draw from
these benchmark experiments. We organize these conclusions

by the desiderata as follows:
(D1) reasoning under uncertainty of partially observed

sensory inputs does not obviously benefit from adding mem-
ory in simulated static environments and very random dy-
namic (dynamic-box) environments, but much more sig-
nificant improvements were observed in the real world and in
more challenging dynamic environments (dynamic-wall).

(D2) safety is improved by both safe RL and model-
based MPC methods. However, classical navigation systems
still achieve the best safety performance at a cost of very
long traversal time. Whether RL-based navigation systems
can achieve similar safety guarantees as classical navigation
systems and whether safety can be improved without signif-
icantly sacrificing the traversal time are still open questions.

(D3) the ability to learn from limited trial-and-error
data is not improved by the evaluated model-based methods.
Currently, we observe that model-based RL methods indeed
improve sample-efficiency, but only when the number of
imaginary rollouts from the learned model is large (e.g.
≥ 2000k) and when they are sampled with randomness.
We therefore hypothesize that the improvement comes from
the robustness brought by learning on more data sampled
from the learned model. Hence, this result motivates not
only more accurate model learning for reducing the number
of imaginary rollouts, but also theoretical understanding of
how the model helps improve the robustness or even safety
of navigation.

(D4) the generalization to diverse and novel envi-
ronments is improved by increasing the randomness of
training environments. However, a noticeable gap of about
5% between training and test environments is not eliminated
by further increasing the number of training environments to
250. This reflects the limitation of simple domain randomiza-
tion to increase the generalization, which is, however, widely
used by the community.

In summary, although the proposed benchmark is not
intended to represent every real-world navigation scenario, it
serves as a simple yet comprehensive testbed for RL-based
navigation methods. We observed that for every desideratum,
no method can achieve 100% success rate on all training
environments. Even though we ensured that we have made
sure that every environment is indeed individually solvable.
This alone indicates that there exists an optimization and
generalization challenge when we have a large number of
training environments as in our proposed benchmark.

9229

Authorized licensed use limited to: George Mason University. Downloaded on July 23,2023 at 22:15:27 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] S. Quinlan and O. Khatib, “Elastic bands: Connecting path planning
and control,” in [1993] Proceedings IEEE International Conference
on Robotics and Automation. IEEE, 1993, pp. 802–807.

[2] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4,
no. 1, pp. 23–33, 1997.

[3] X. Xiao, Z. Xu, Z. Wang, Y. Song, G. Warnell, P. Stone, T. Zhang,
S. Ravi, G. Wang, H. Karnan et al., “Autonomous ground navigation
in highly constrained spaces: Lessons learned from the barn challenge
at icra 2022,” arXiv preprint arXiv:2208.10473, 2022.

[4] X. Xiao, B. Liu, G. Warnell, and P. Stone, “Motion planning and
control for mobile robot navigation using machine learning: a survey,”
Autonomous Robots, pp. 1–29, 2022.

[5] Y. Chow, O. Nachum, A. Faust, M. Ghavamzadeh, and E. A. Duéñez-
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