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Abstract— Metric ground navigation addresses the problem
of autonomously moving a robot from one point to another
in an obstacle-occupied planar environment in a collision-free
manner. It is one of the most fundamental capabilities of
intelligent mobile robots. This paper presents a standardized
testbed with a set of environments and metrics to benchmark
difficulty of different scenarios and performance of different
systems of metric ground navigation. Current benchmarks focus
on individual components of mobile robot navigation, such as
perception and state estimation, but the navigation performance
as a whole is rarely measured in a systematic and standardized
fashion. As a result, navigation systems are usually tested and
compared in an ad hoc manner, such as in one or two manually
chosen environments. The introduced benchmark provides a
general testbed for ground robot navigation in a metric world.
The Benchmark for Autonomous Robot Navigation (BARN)
dataset includes 300 navigation environments, which are or-
dered by a set of difficulty metrics. Navigation performance
can be tested and compared in those environments in a
systematic and objective fashion. This benchmark can be used
to predict navigation difficulty of a new environment, compare
navigation systems, and potentially serve as a cost function and
a curriculum for planning-based and learning-based navigation
systems. We have published our dataset and the source code
to generate datasets for different robot footprints at www.cs.
utexas.edu/˜attruong/metrics_dataset.html.

I. INTRODUCTION

Autonomously moving from one point to another, espe-
cially in challenging environments, is one essential capability
of intelligent mobile robots. This problem of mobile robot
navigation has been studied by the robotics community for
decades [1]–[3]. Sophisticated navigation systems have been
developed using classical control methods [3]–[5], path and
motion planning [1], [2], [6], or, more recently, machine
learning techniques [7]–[11].

However, despite the plethora of works in mobile robot
navigation, there is no generally accepted metric by which
to compare different approaches against one another, even for
navigation in a simple metric world, where only geometric
obstacles are considered. Although in relatively open space,
navigation performance of different systems may not vary
significantly, the lack of an accepted metric becomes partic-
ularly relevant in environments that are more difficult to navi-
gate. Those environments include, for example, unstructured
or confined spaces for search and rescue [12] and highly
constrained spaces where agile maneuvers are required for
robots with nonholonomic motion constraints [10]. Newly
developed navigation systems are only tested and compared
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to existing ones in a limited number of ad hoc environments
with unquantified difficulties.

To address the lack of a standardized method to test
and compare mobile robot navigation systems, this work
provides a Benchmark for Autonomous Robot Navigation
(BARN) of 300 simulated test environments, which can also
be easily instantiated in the physical world. We design a set
of metrics to quantify navigation difficulty of these simulated
environments for ground mobile robots to move in obstacle-
occupied spaces without collision. We then unify this set
of metrics via a learned function approximator to introduce
a novel measure of an environment’s difficulty level for
metric ground navigation. Through an extensive amount
of 3000 simulated trials using two widely used planners,
Dynamic Window Approach (DWA) [2] and Elastic Bands
(E-Band) [1], we benchmark the relative difficulty levels
for the test environments. We also run multiple physical
navigation trials to validate our model’s predictive power of
navigation difficulty. To summarize, the main contributions
of this work are:
• A benchmark dataset (BARN) of 300 simulated test

environments for metric ground navigation,
• A set of metrics and a data-driven model to combine

them to quantify the challenge posed by a particular
environment for mobile robot navigation.

The rest of the paper is organized as follows: Section
II reviews existing benchmarks related to mobile robot
navigation. Section III describes our method of constructing
BARN, including the test environments, the set of difficulty
metrics, and the data-driven model to combine them. Section
IV provides implementation details and experiment results to
validate that the proposed difficulty metrics and the learned
function approximator can predict navigation difficulties us-
ing a physical mobile robot in the real world. Section V
concludes the paper.

II. RELATED WORK

This section reviews existing testbeds and metrics related
to mobile robot navigation.

A. Testbeds

Testbeds are designed as an apparatus to quantify perfor-
mance based on a set of pre-defined metrics. The tests can be
replicated when following a standardized testing procedure.

1) Physical Testbeds: National Institute of Standards and
Technology (NIST) has created standard testbeds for re-
sponse robots, including ground, aerial, and aquatic vehi-
cles [13]. Specialized test methods are developed to test
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individual robot capacity, e.g. locomotion, sensing, commu-
nication, durability. Robotarium [14] is a testbed developed
to test algorithms for multi-robot research, using a fleet of
miniature differential drive robots. Xiao et al [15] reviewed
20 physical testbeds for snake robots and pointed out that
all of them are designed in an ad hoc manner, i.e. tailored
to demonstrate the newly developed capability. They also
provided suggestions on a general testbed design. The re-
search thrust on developing robot testbeds demonstrates the
robotics community’s need for standardized test methods to
quantify robot performance and research progress. Similar
to the aforementioned testbeds but with a different purpose,
the proposed testbed is developed to benchmark mobile robot
navigation systems operating in a metric world.

2) Software Testbeds: Thanks to the recent progress on
data-driven approaches, testbeds are frequently instantiated
as datasets, e.g. ImageNet [16]. In the mobile robot naviga-
tion domain, especially on the perception and estimation side,
many such software testbeds have also been created [17]–
[20], where perceptual data is collected along a fixed mo-
tion trajectory. However, when arbitrary motion execution
is required, such interactive testbeds become sparse. Even
when motion is allowed [21], [22], the locomotion part of
navigation is assumed to be trivial, i.e. the testbeds only
benchmark the robot’s ability to infer “where” to navigate,
instead of to generate feasible and optimal motion commands
for “how” to navigate. The proposed testbed focuses on the
ability to autonomously generate viable motion commands
in order to navigate between two fixed points in a given
environment. Since only geometric obstacles are considered,
it can easily be instantiated into a physical testbed.

B. Metrics

A common metric to quantify mobile robot navigation
difficulty is distance from points on the path to the closest
obstacle [23], [24], as the closer the robot needs to come
to an obstacle, the more difficult the navigation task. Past
experiences (e.g. previous failure cases) have also been
utilized to quantify difficulty as a function of a single
state when navigating in the ocean [25] or in city traffic
[26]. Not many works considered more than one single
source of difficulty: Soltani et al. [27] represented difficulty
with both distance to closest obstacle and visibility of a
particular location and combined their effects using manually
defined weights. Robot motion risk can also be viewed as
an indication of difficulty: recent risk reasoning frameworks
extended the dependency of risk associated with a certain
state into motion history [12], [28], and pointed out that
difficulty/risk caused by, for example, turning or dragging
a tether, cannot be determined by a single state alone.
The multiple difficulty metrics designed in this work are
inspired by the risk universe [12]. In order to determine the
combined effect of all individual elements, we use a data-
driven approach instead of manually assigned weights.

III. APPROACH
In this section, we describe our method of constructing

BARN. The navigation environments are first generated
using cellular automaton [29], for which navigational paths
are planned on the robot Configuration Space (C-Space)
[30]. Second, we introduce a set of metrics used to quantify
navigation difficulty level. Third, a function approximator is
learned in a data-driven manner to combine these difficulty
metrics and determine the final difficulty level of navigating
through a specific environment.

A. Navigation Environments
Navigation environments are systematically generated

through the method of cellular automaton [29]. A cellular
automaton was originally designed as a collection of black
cells on a white grid of specified shape that evolves through
a number of discrete time steps according to a set of rules
based on the states of neighboring cells [29]. In this work,
we use black cells to represent obstacle-occupied space
and white cells to represent free space. The evolution of
the black cells generates different obstacle configurations.
Cellular automaton is easy to scale to any size, generates
more realistic environments than random fill, and is also
easily customizable due to its parameters that can be changed
to generate different types of worlds. Due to the smoothing
iterations, the resulting grid resembles real-world obstacles
more than the initial randomly filled grid does. We use
four parameters of the cellular automaton to control the
generation of obstacles: initial fill percentage, smoothing
iterations, fill threshold, and clear threshold. The procedure
to generate navigation environments using cellular automaton
is provided in Algorithm 1, with an example in Figure 1.

Algorithm 1 Navigation Environments Generation
1: Inputs: m, n, initial fill percentage, smoothing itera-

tions, fill threshold, clear threshold,
2: Randomly fill a m × n grid of 0’s with initial fill

percentage of 1’s
3: for iteration k = 1 : smoothing iterations do
4: for cell in grid do
5: if |FilledNeighbors(cell)| ≥ fill threshold then
6: cell ← 1 . Fill cell
7: end if
8: if |FilledNeighbors(cell)| ≤ clear threshold then
9: cell ← 0 . Empty cell

10: end if
11: end for
12: end for

Each obstacle grid is then converted into the robot’s C-
space based on the robot dimension. In the C-space, one free
point on both the left and right edge are chosen at random
to be the start and end points of the path, respectively. A
flood-fill algorithm [31] is used to determine if there is an
open path between the points. If no path is possible, then the
space is discarded. A* algorithm [32] is then used to plan a
path in the free C-space.
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B. Difficulty Metrics

Upon generating an environment through cellular automa-
ton and establishing a path therein, various metrics are
calculated in the C-space along the path to quantify the
difficulty of traversal.

1) Distance to Closest Obstacle: At each cell in the
environment, the Distance to Closest Obstacle is defined as
the distance from this cell to the nearest occupied space. This
metric is averaged over all points in the path.

2) Average Visibility: A cell’s Average Visibility is de-
fined as the average of the distances to an obstacle along
each ray in a 360◦ scan. In our discrete space, we average
the visibility along eight rays (four cardinal directions and
four diagonals), then average this metric over all points in the
path. Figure 2 provides examples of high and low visibility.

3) Dispersion: From a given state in the environment, a
360◦ scan is cast up to a certain max length. The dispersion
at that state is defined as the number of alternations in that
scan from occupied to unoccupied space or vice versa, as
shown in Figure 3.

Dispersion captures the number of potential paths out of
a given location. A higher dispersion means more possible
options for the navigation algorithm and therefore means
the environment poses more challenges, especially for a
sampling-based local planner, like DWA [2]. In our discrete
space, dispersion is calculated by casting 16 rays up to a
max length, and checking which are blocked or open. This
metric is calculated for each point in the path and averaged
over the length of the path.

4) Characteristic Dimension: The Characteristic Dimen-
sion at a given cell is defined as the visibility of the axis
through the cell with the lowest visibility. In our discrete
space, 8 axes (each made up of 2 rays 180◦ apart) are
cast 22.5◦ apart from one another. Each axis’ visibility
is calculated as the sum of the distances to an obstacle
along both of the rays that make it up. The Characteristic
Dimension is defined as the visibility of the axis with the
lowest visibility. The Characteristic Dimension captures the
tightness of a space. A low Distance to Closest Obstacle
could occur in a relatively open space and therefore still
be quite easy to navigate. Additionally, a space might be
tight along one axis yet very open along another (e.g. a long
tunnel) and therefore have a high Average Visibility despite
being narrow. Figure 4 captures such an instance of when
Distance to Closest Obstacle and Average Visibility may fail
to completely represent the difficulty of a space.

Fig. 1. Three smoothing iterations of a cellular automaton with an initial
fill percentage of 0.35, fill threshold of 5, and clear threshold of 1

Fig. 2. An example of high and low Average Visibility

Fig. 3. Dispersion represents the alternations from occupied to unoccupied
space or vice versa.

5) Tortuosity: Tortuosity, as a property of a curve being
tortuous, is calculated over the entire path using the arc-chord
ratio. The arc length is the length of the entire path, while
the chord length is the length of a straight line between the
start and end points. This metric captures bends in the path
that make navigation more difficult compared to navigation
along a relatively straight path.

C. Combined Difficulty Level

We first use a data-driven approach to benchmark the
relative difficulty level of all the navigation environments
in our dataset. Thousands of simulation trials using repre-
sentative and widely-used navigation systems are conducted
to reveal the actual difficulty of an environment. Second,
to investigate how the difficulty metrics interact with each
other and contribute to the combined difficulty measure, we
learn a function approximator to map from the individual
difficulty metrics to the final difficulty level of a given
environment. This model can be used to predict difficulty
of unseen navigation environments. Please refer to Section
IV for details.

IV. EXPERIMENTS

In this section, we present implementation details of our
dataset generation and physical experiments using a ground
robot to validate that our benchmark model can accurately
predict the difficulty level of unseen physical navigation
environments.

A. Dataset Generation

We use 12 sets of cellular automaton parameters to gener-
ate the 300 navigation environments of 30 by 30 cells in our
dataset, shown in Table I. The parameters are chosen to gen-
erate varied worlds with reasonably realistic configurations.
Each of those parameter sets is repeated 25 times. We use
a Clearpath Jackal robot’s dimension (0.508m by 0.430m,
corresponding to 5 by 5 cells) to inflate the obstacles and
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Fig. 4. Characteristic Dimension captures the tightness of a state in an
environment.

generate the C-spaces. We also provide the original obstacle
map in the dataset so that C-spaces corresponding to different
robot sizes can be generated by the users.

TABLE I
CELLULAR AUTOMATON PARAMETERS

Parameters Values

initial fill percentage {0.15, 0.20, 0.25, 0.30}
smoothing iterations {2, 3, 4}

fill threshold 5
clear threshold 1
neighborhood 8

Repetitions 25

The minimum, maximum, mean, and standard deviation of
the five difficulty metrics present in the dataset are shown in
Table II. For a given cell, the minimum Distance to Closest
Obstacle is 1 for an unoccupied space, and the maximum
is 10.20. We cast eight rays to compute Average Visibility,
resulting in a range from 1 to 14. The minimum dispersion is
0 (no alternations between occupied and unoccupied spaces
along the 16 axes) and the maximum is 12. The minimum
Characteristic Dimension is 0 (completely closed space) and
the maximum is 20.00. The four metrics above are computed
for and averaged over all states on a path. The minimum
tortuosity of a path is 1 (straight line) and the maximum is
1.71.

TABLE II
DIFFICULTY METRIC VALUES

Min. Max. Mean Std.

Distance to Closest Obstacle 1 10.20 2.37 0.93
Average Visibility 1 14.00 4.42 1.64

Dispersion 0 12 4.35 0.89
Characteristic Dimension 0 20.00 4.05 2.66

Tortuosity 1 1.71 1.21 0.14

1) Simulation Trials: We use a simulated Clearpath
Jackal, a four-wheeled, differential drive, nonholonomic
ground robot, in a Robot Operating System (ROS) Gazebo
simulator [33] to benchmark the relative difficulty levels of
the navigation environments in our dataset.

We choose two different widely used navigation planners,
DWA [2] and E-Band [1] to navigate Jackal. DWA is a rep-
resentative sampling-based motion planner. Given a global

path produced by the A* algorithm [32], DWA generates
samples of linear and angular velocities and evaluates the
score of each sample based on closeness to the obstacle,
to the global path, and progress toward the local goal. The
action sample with the best score is executed to move the
robot. The randomness in the sampling process leads to non-
deterministic behavior in the same environment. E-Band is
a representative optimization-based motion planner, which
optimizes an initial trajectory. It deforms the trajectory using
virtual bubbles along it, which are subject to repulsive force
from the obstacles. The optimized trajectory acts like an
elastic band. The default navigation planner from the robot
manufacturer, Clearpath Robotics, is the DWA planner. We
use the default planner parameters from the manufacturer1

for DWA, and the default parameters from the E-Band
designer2 for the E-Band planner. We set E-Band’s maximum
allowable linear and angular velocities (0.5m/s and 1.57rad/s)
to match with those of DWA for a fair comparison.

For each one of the 300 environments in our dataset, a
pre-built map is provided to the planner, and we run five
trials each for DWA and E-Band, resulting in a total number
of 3000 trials (Figure 5). The final difficulty measure is the
traversal time averaged over the ten trials and normalized by
path length. We also compute the variance of the traversal
time. A 30-second penalty is introduced to trials where the
robot fails to reach the goal, e.g. getting stuck. The DWA,
E-Band, and combined (averaged) with predicted navigation
performance is shown in Figure 6. From left to right, the
300 environments are ordered from easy to difficult. High
difficulty level is correlated with high variance. Operating
with a map, DWA and E-Band achieve an average normalized
traversal time of 3.30±0.50s/m and 3.24±0.38s/m, respec-
tively. As a sampling-based planner, DWA results in higher
standard deviation than the optimization-based E-Band, and
is more sensitive to the increased difficulty level.

2) Function Approximator: To approximate the combined
effect of all five difficulty metrics, we use a simple neural
network consisting of two fully connected layers with 64
neurons each. Distance to Closest Obstacle, Average Visibil-
ity, Dispersion, and Characteristic Dimension are computed
for and averaged over all the states on a path. Tortuosity
is computed for the entire path. All these metrics are nor-
malized based on their mean and standard deviation (Table
II). The label of the neural network output is the average
traversal time normalized by path length, computed from
the 3000 simulation trials. Our function approximator can
achieve a 0.10 prediction loss on normalized traversal time,
which corresponds to, for example, 0.50 seconds error while
traversing a 5m long path.

B. Physical Experiments

To validate our benchmarks in the real world, we also
conduct physical trials in unseen navigation environments.
We use a physical Jackal with DWA and E-Band planners

1https://github.com/jackal/jackal/tree/
melodic-devel/jackal_navigation/params

2http://wiki.ros.org/eband_local_planner
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Fig. 5. Four Example Environments in Gazebo Simulation (ordered by ascending relative difficulty level)

Fig. 6. Environment Difficulty Benchmarked by Navigation Performance
of DWA and E-Band

parameterized in the same way as in the simulation trials.
Five new navigation environments are created using cellular
automaton and instantiated in the real-world with cardboard
boxes representing obstacles (Figure 7). We run five trials
with each planner in each environment, resulting in a total
of 50 physical trials. Unlike the simulated trials, the planners
do not have access to a pre-built map. As shown in Figure 8,
higher predicted difficulty corresponds to longer normalized
traversal time (The fitted blue line has a slope of 0.96 and
almost zero intercept). In physical environments with low

difficulty, DWA performs better than E-Band without a pre-
built map. However, the steeper slope of the green line (1.17)
than that of the red line (0.74) indicates that DWA is more
sensitive to increased difficulty level than E-Band is, which
is a similar trend we observe in simulation.

V. CONCLUSIONS

We present a dataset3 of 300 simulated navigation en-
vironments and five difficulty metrics along with a data-
driven model to quantify the difficulty measure of a particular
environment for mobile robot navigation. We benchmark the
relative difficulty level using 3000 simulated navigation trials
with two widely used navigation planners, DWA and E-Band,
which are representative of sampling-based and optimization-
based planners, respectively. Our model can predict the
difficulty of unseen navigation environments based on the
five difficulty metrics, i.e. Distance to Closest Obstacle,
Average Visibility, Dispersion, Characteristic Dimension, and
Tortuosity. 50 physical experiment trials demonstrate that the
difficulty level predicted by our model corresponds to real-
world performance in unseen environments. As a general
testbed, metric ground navigation performance of different
systems can be tested and compared with each other in a
systematic and objective fashion. The difficulty metrics and
the learned function approximator can be used as a new cost
function and a curriculum for planning-based and learning-
based navigation systems.
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