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Abstract—Social navigation is the capability of an autonomous
agent, such as a robot, to navigate in a “socially compliant” manner
in the presence of other intelligent agents such as humans. With the
emergence of autonomously navigating mobile robots in human-
populated environments (e.g., domestic service robots in homes
and restaurants and food delivery robots on public sidewalks),
incorporating socially compliant navigation behaviors on these
robots becomes critical to ensuring safe and comfortable human-
robot coexistence. To address this challenge, imitation learning is a
promising framework, since it is easier for humans to demonstrate
the task of social navigation rather than to formulate reward func-
tions that accurately capture the complex multi-objective setting
of social navigation. The use of imitation learning and inverse
reinforcement learning to social navigation for mobile robots, how-
ever, is currently hindered by a lack of large-scale datasets that
capture socially compliant robot navigation demonstrations in the
wild. To fill this gap, we introduce Socially CompliAnt Navigation
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Dataset ( SCAND )–a large-scale, first-person-view dataset of so-
cially compliant navigation demonstrations. Our dataset contains
8.7 hours, 138 trajectories, 25 miles of socially compliant, human
tele-operated driving demonstrations that comprises multi-modal
data streams including 3D lidar, joystick commands, odometry,
visual and inertial information, collected on two morphologically
different mobile robots–a Boston Dynamics Spot and a Clearpath
Jackal–by four different human demonstrators in both indoor and
outdoor environments. We additionally perform preliminary anal-
ysis and validation through real-world robot experiments and show
that navigation policies learned by imitation learning on SCAND
generate socially compliant behaviors.

Index Terms—Autonomous robots, deep learning, machine
learning, social robots.

I. INTRODUCTION

SOCIAL navigation is the capability of an autonomous agent
to navigate in a socially compliant manner such that it rec-

ognizes and reacts to the objectives of other navigating agents,
at least somewhat adjusting its own path in response, while also
projecting signals that can help the other agents reciprocate. En-
abling mobile robots to navigate in a socially compliant manner
has been a subject of great interest recently in the robotics and
learning communities [1]–[5]. Towards enabling this capability,
demonstration data of socially compliant navigation for mobile
robots, such as the ones shown in Fig. 1, can be a valuable
resource. For instance, such demonstration information can be
used to learn socially compliant robot navigation using the
paradigm of Learning from Demonstrations (LfD) [6], [7] or
understanding human navigation in the presence of autonomous
robots [8].

Datasets for social navigation, generally used for learning and
benchmarking, include data collected both in the real-world [9]
and in simulated environments [10], [11]. While such datasets
provide basic trajectories of the robots and humans, they either
contain limited interactions in constrained, orchestrated environ-
ments or restrict themselves to indoor-only navigation scenarios.
When collecting data in such controlled settings [9], naturally
occurring social interactions including—but not limited to—
following lane rules of a country, yielding to pedestrians and
vehicles, walking with and against a crowd of people, and street
crossing is not captured. Additionally, the robots used for data
collection in previous social navigation datasets [9] tend to use
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Fig. 1. A human demonstrator teleoperates the two robots, following a socially
compliant strategy (left- moving with traffic, right- sticking to the right of the
road) around human crowds.

a simple controller for point-to-point navigation that does not
explicitly exhibit socially aware navigation.

Recently, imitation learning has emerged as a useful paradigm
for designing mobile robot navigation controllers [12]–[15]. In
this paradigm, the desired navigation behavior is first demon-
strated by an agent such as a human, the recording of which
is then utilized by an imitation learning algorithm to imitate.
This intuitive way of teaching a task to a robot is also easy for
non-expert humans since it only requires providing demonstra-
tions, instead of defining the rules of the task itself, which may
be hard to explicitly define for social navigation. Motivated by
recent successes of imitation learning in robot navigation, we
posit that one way to enable autonomous agents to navigate
socially is through learning from human demonstrations of
socially compliant navigation behavior. However, there is a lack
of large-scale datasets containing socially compliant navigation
demonstrations in the wild that can be utilized for imitation
learning.

To fill this gap, in this work, we introduce a dataset of
demonstrations for socially compliant robot navigation in the
wild. Our dataset contains 8.7 hours of human-teleoperated, so-
cially compliant, navigation demonstrations, specifically, Velo-
dyne lidar scans, joystick commands, odometry, camera visu-
als, and 6D inertial (IMU) information collected on two mor-
phologically different mobile robots—a Clearpath Jackal and
a Boston Dynamics Spot—within the University of Texas at
Austin university campus. Comprising 25 miles in total of 138
trajectories, Socially CompliAnt Navigation Dataset (SCAND)
is publicly released1 and also contains labeled tags of naturally
occurring social interactions with every trajectory. Additionally,
we demonstrate the utility of the dataset for studying questions
relevant to social navigation. We first show that there exists more
than one strategy for an agent to navigate with social compliance,
as it is possible for a classifier to differentiate between driving
approaches of two different human demonstrators with an accu-
racy of 74.48%. Secondly, we also show that with SCAND, it is
possible to learn socially compliant local and global navigation
policies through imitation learning.

1www.cs.utexas.edu/∼xiao/SCAND/SCAND.html

II. RELATED WORK

In this section, we review related literature with a focus on
learning-based approaches for social navigation. We addition-
ally survey relevant datasets for robot navigation and contrast
their contributions with this work.

A. Learning for Robot Navigation

Recently, several algorithms have emerged that show the
potential of applying learning to address challenges in robot nav-
igation [2]. Broadly speaking, in the robot navigation literature,
learning-based approaches have been shown to be successful
in problems such as adaptive planner parameter learning [16],
overcoming viewpoint invariance in demonstrations [13], and
end-to-end learning for autonomous driving [14], [17], [18].
Specifically in applying imitation learning for social navigation,
the work by Tai et al. [19] is the closest to our work. They
provide a simulation framework in gazebo along with a dataset
generated using the same where virtual human agents navigate
following the social force model [1]. They additionally train
a social navigation policy using the Generative Adversarial
Imitation Learning algorithm assuming the social force model
as the “expert” demonstrator and show a successful deployment
of the learned policy in the real-world on a turtle bot robot.
While their work has shown that imitation learning can be
applied to address the social navigation problem, they do so
assuming the social force model in simulation as the “expert”
demonstration. While simulated environments enable fast and
safe data collection for online learning, they lack the naturally
occurring social interactions seen in the wild. Also, as we show
in section IV, there can be more than one strategy for an agent
to navigate socially in a scene, which is not considered in their
work.

Other learning paradigms such as Reinforcement Learning
(RL) have also been applied to address the social navigation
problem. Everett et al. [4] present CA-DRL, a multi-agent col-
lision avoidance algorithm learned using RL. While this work
shows impressive real-world results, their approach is limited to
specific social scenarios and requires simulating these scenarios
for the online learning algorithm to learn episodically. Kret-
zschmar et al. [20] use Inverse Reinforcement Learning to learn
cost functions for a socially compliant navigation policy. Similar
to our work, they utilize human demonstrations of the social
navigation task, however, they do so utilizing a small-scale,
one-hour-long dataset. In this work, we contribute a large-scale
dataset of robot social navigation demonstrations comprising
multi-modal real-world data over multiple hours, both indoors
and outdoors, on two different robots. Additionally, we train
an imitation learning algorithm to show it is possible to learn
socially compliant global and local navigation policies using
our dataset.

B. Datasets for Social Navigation

Over the last decade, datasets containing robots navigating in
both simulated and real-world environments have been useful
for a wide variety of research areas, such as tracking groups
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TABLE I
COMPARISON OF REAL-WORLD DATASETS FOR ROBOT NAVIGATION

of people [9], [25], [26], human trajectory prediction [27],
navigation [28], robot localization [21], [29], [30] and collision
risk assessment [31].

1) Simulated Datasets for Social Navigation: Social envi-
ronments in simulation can provide researchers with fast data
collection on social navigation [10], [19], [32], [33]. Moreover,
such simulated environments can be generated with a specified
number of elements: the number and locations of the humans, the
structure of the room, the number of objects, and the interactions
between people and between objects and people [11]. While sim-
ulated platforms provide these benefits, they are limited in that
they lack the natural, real-world interactions that are experienced
by humans. Datasets that capture real-world robot navigation
data in the wild provide researchers with more naturally occur-
ring scenarios [21]–[24]. Additionally, datasets collected in the
wild provide sensory data for these scenarios which can be then
used for perceptual tasks related to navigation [34].

2) Real-World Datasets for Robot Navigation: In addition
to simulated datasets, several real-world datasets for long-term
robot navigation in human environments have also been made
available over the last decade. In the CoBots dataset [21], two
CoBots we deployed indoors autonomously using a topolog-
ical graph planner and collected more than 130 km worth of
laser scans, odometry, and localization data over 1082 deploy-
ments. Similarly, the L-CAS [22], FLOBOT [24], JRDB [8]
and NCLT [23] datasets contain LiDAR scans, RGBD visu-
als, GPS, and IMU data collected independently on different
robots, addressing perception-related challenges to long-term
robot navigation. In all these different datasets, the robots were
deployed in a public environment, such as a restaurant or a
university campus, and teleoperated by a human as opposed
to being autonomous, but these teleoperated demonstrations are
not explicitly socially compliant. The JRDB social navigation
dataset [8] is the closest to our work, but it is smaller in scale,
containing only 64 minutes worth of data from 54 indoor and
outdoor trajectories. While the focus of the JRDB dataset is to

solve perception-related challenges such as human tracking and
detection in social navigation, the focus of the SCAND dataset
in this work is to address the “navigation” sub-component
of social navigation. The THÖR dataset [9] provides motion
trajectories of both robots and humans using tracking helmets.
However, this is smaller in scale since it contains only one
hour’s worth of data. Also, the data is collected indoors in an
8.4 × 18.8 m laboratory room with an orchestrated social navi-
gation scenario for the human agents in the scene and a socially
unaware, pre-defined path for the robot—adjusting neither its
speed nor trajectory to account for surrounding people. Ex-
isting real-world datasets for robot navigation are summarized
in Table I.

While previous datasets collected with robots and humans
have proven to be useful to study localization, perception, and
other navigation-related challenges, they lack demonstration
information in the form of motion commands and navigation
strategies in different social scenarios that could help us un-
derstand socially compliant robot navigation in the presence of
other autonomous agents. The SCAND dataset introduced in this
work addresses this gap and provides rich human demonstration
information in the form of joystick commands and multi-modal
robot sensor data in different, naturally occurring social sce-
narios. SCAND also contains labeled tags of twelve different
social interactions that occurred along the path. Also, since
robots of different morphologies and capabilities could navigate
differently and induce different social interactions, SCAND also
includes data from two different robots. For example, the legged
Spot, capable of climbing stairs could choose to prefer the stairs
along its path while navigating whereas the wheeled Jackal
might choose a ramp to navigate. The other datasets use only
one robot to collect data (the Cobots dataset [21] uses two robots
but they are morphologically the same). Using two morpholog-
ically different robots makes SCAND useful to investigate social
navigation in robots with different morphologies (wheeled vs.
legged).
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Fig. 2. Five example scenarios from SCAND showing the RGB image and below it the accompanying Lidar with the monocular image from side camera on
the Spot. From left to right, the scenarios have the tags “Street Crossing,” “Narrow Doorway, “Navigating Through Large Crowds,” “Vehicle Interaction,” and
“Crossing Stationary Queue.”.

III. DATA COLLECTION PROCEDURE

In this section, we first describe the data collection proce-
dure used in SCAND and outline the sensor-suite present on
both robots. We then describe the labeled annotations of social
interactions provided with every trajectory.

A. Collecting Data

To collect multi-modal, socially compliant demonstration
data for robot navigation, four human demonstrators—including
the first two authors of this work—navigate the robot by teleop-
eration using a joystick. We collected data within the UT Austin
university campus, with the demographics of the humans in the
scene comprised mostly of students, faculty, and other campus
denizens. For each of the 138 trajectories in SCAND, the human
demonstrator walks behind the robot at all times, maintaining
on average two meters distance. The human demonstrator does
not explicitly interact with the crowd in the scene. Unlike
other datasets for social navigation [9], we do not restrict data
collection to a controlled, indoor environment or orchestrate a
social scenario for data collection. Instead, similar to the JRDB
dataset [8], we perform data collection in the wild in both indoor
and outdoor environments. The two robots are driven around
the university campus on frequently used sidewalks, roads, and
lawns, and inside buildings, all with people in the scene during
peak hours of high foot traffic. This includes data collected
outdoors near the university’s football stadium on two game
days with high traffic public crowds gathered near the arena.
The Spot is driven at linear and angular velocities in the range
of [0, 1.6] m/s and [−1.5, 1.5] rad/s, respectively, and the Jackal
in the range of [0, 2.0] m/s and [−1.5, 1.5] rad/s, respectively.
Note that these velocities are within the range of many people’s
normal walking speed.

Fig. 3 shows the sensors present on the Clearpath Jackal and
the Boston Dynamics Spot robots. Both robots have in common a
VLP-16 Velodyne laser puck publishing at a frequency of 10 Hz,
a 6D inertial (IMU) sensor at 16 Hz, and a front-facing Azure
Kinect RGB camera at 20 Hz. In addition to these common
sensors, the Jackal has a front-facing stereo camera (20 Hz) and
wheel odometry (30 Hz), while the Spot has five monocular
cameras on its body (publishing at 5 Hz), placed as shown in
Fig. 3. We utilize the Boston Dynamics APK to record the visual
odometry of its body frame and the joint angles of the legs on

Fig. 3. Sensors present on the wheeled Jackal and the legged Spot robots.
Along with this multi-modal sensor information, SCAND also contains joystick
commands issued during the navigation demonstration.

the robot. SCAND also contains transforms between the frames of
each of the sensors relative to the robot’s body for both robots.
We utilize AMRL’s software stack [35] for data collection from
different sensors which we record in the rosbag format [36].

Although we provide visual information of the scene in the
form of surround-view monocular images on the Spot, RGB im-
age from the front-facing Kinect camera, and 3D Velodyne laser
scans on both robots, since the focus of this work is specifically
on navigation, we do not provide any labeled annotations for
human detection or tracking. We refer the reader to the JRDB
dataset [8] which contains detailed, high-quality annotations
for solving perception-related tasks. Instead, SCAND contains
joystick commands of linear and angular velocities executed by
the demonstrator while teleoperating the robot socially, along
with rich, multi-modal sensory information of the environment
including labeled annotations of 12 different social interactions
in every trajectory. Fig. 2 shows five example scenarios and their
associated tags.

B. Labeled Annotations of Social Interactions

We annotate each trajectory in SCAND with labels describing
social interactions that occurred along the path. The labels are in
the form of a list of textual captions of social interactions taking
place in a trajectory, chosen from a set of twelve predefined
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TABLE II
DESCRIPTIONS OF LABELED TAGS CONTAINED IN SCAND

labels of social interactions observed in SCAND. For the full list
of labels, refer to Table II. We intend the labels to be useful
for future studies of specific scenarios that occur during social
navigation in the real-world.

IV. ANALYSIS

In this section, we provide analysis on SCAND with the data
collected on the Spot to illustrate the usefulness of this dataset
for answering a variety of questions related to social navigation.
Specifically, we ask the following questions:

1) Is there more than one strategy for socially navigating in
a scene?

2) Can we learn a local and global planner for social naviga-
tion using SCAND?

We answer question 1 in subsection IV-A by learning a neural
network-based classifier that is trained for the task of demon-
strator classification given a ten-second sequence of sensor
observations and joystick commands as input. We then answer
question 2 in subsection IV-B by applying the behavior cloning
(BC) imitation learning algorithm [37] on SCAND to learn a global
and local planner jointly.

A. Demonstrator Classification

In this subsection, we consider the question “is there more
than one strategy for socially navigating in an environment?”
We hypothesize that the answer is yes, there is more than one
strategy to navigate in a socially compliant manner in a given
scenario.

Fig. 4. Network architecture and inputs for the demonstrator classifier. The
classifier takes as its input ten-second long sensor observations and predicts a
demonstrator label. The BC agent (not shown in this figure) follows a similar
architecture, with a global planner and local planner head instead of a classifier
head. Additionally, instead of the future trajectory, the BC agent takes as its inputs
the move_base global plan and desired velocities.

1) Approach and Implementation: To answer this question
and to validate our hypothesis, we choose sixteen trajectories
driven by two demonstrators navigating along the same route
(Speedway road within the university campus) and train a neural
network for the task of demonstrator classification (training on
twelve trajectories and validating on four trajectories). The input
to our classifier is a ten-second long sequence of sensor observa-
tions. This sequence consists of processed sensor observations
provided in SCAND such as lidar scans (subsampled to 1 Hz
and represented as grayscale bird’s eye view (BEV) image),
positions of the robot relative to the first lidar frame, future
trajectory driven by the human consisting of 200 points in the
most recent lidar frame, inertial and joystick values executed by
the demonstrator at each of the lidar frames. The neural network
architecture consists of a four-layer convolutional encoder to
process the grayscale BEV lidar images and a three-layer fully
connected network to process the other sensor observations. The
representations output by these layers are fed into a three-layer
fully connected network classifier head. We use the binary
cross-entropy loss to train the classifier network. Fig. 4 shows
the inputs and neural network architecture of the demonstrator
classifier.

2) Results and Conclusion: We find that the classifier is
74.48% accurate at classifying the expert on the held-out test
set. Given that random guessing would lead to a success rate
of 50%, and that many ten-second trajectories do not indicate
any differentiating social interactions, this number is indicative
of successful prediction. The ability of the classifier to identify
the demonstrator from their navigation style with an accuracy of
74.48% using a ten-second sequence of observations, combined
with the fact that the demonstrations in SCAND are socially
compliant shows that there exists more than one strategy for
socially compliant navigation in a given scenario, validating
our hypothesis. Enabling algorithms to take into consideration
this manifold of socially compliant robot navigation behaviors
naturally observed in humans demonstrations is a promising
direction for future work.
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B. Imitation Learning for Global and Local Planning

1) Approach and Implementation: To answer question 2, we
apply the BC imitation learning algorithm [37] on SCAND to
jointly train end-to-end a socially-aware global and local planner
for robot navigation. The objective of the global planner agent is
to predict the socially compliant global plan (the future trajectory
driven by the human demonstrator, within a horizon of ten meters
distance from the robot). The local planner agent’s objective is
to predict the forward and the angular velocities demonstrated in
SCAND in a socially compliant manner. We jointly train the local
and the global planner agents using a common representation
space of observations, similar to the demonstrator classifier
network shown in Fig. 4. However, unlike the demonstrator
classifier network with a single classifier head, here we use
two different heads (three-layer fully connected networks) for
the global and the local planner agents. As inputs to the BC

agent, we provide processed sensor observations from SCAND

of two seconds in length to account for temporal variations
in the scene; this includes BEV lidar scans (subsampled to
2 Hz and represented as grayscale BEV image as shown in
Fig. 4), positions of the previous lidar frames relative to the
first lidar frame and inertial information at each of the lidar
frames. Additionally, we also provide the global path and desired
velocities produced by move_base [30] using the location of
the robot ten meters in the future from its current position as
prior information to the network. We posit that feeding this
prior information from move_base as inputs to the BC agent
would enable improved performance. The global planner head
predicts 200 points in the path driven by the demonstrator, and
the local planner predicts 20 timesteps of joystick commands
(v, ω) issued by the demonstrator since the current frame. We
sum the mean-squared error loss objectives for both agents and
update their parameters together. Note that we do not utilize any
representation learning algorithm to pretrain the encoders that
process the sensor observations, but doing so may potentially
improve results. However, since the focus of this analysis is to
show the potential of SCAND in enabling existing imitation learn-
ing algorithms to learn socially compliant navigation policies,
representation learning is left to future work.

2) Results and Conclusion: To evaluate the social naviga-
tion behavior of the global planner, we compute the Hausdorff
distance metric on a held out test set, between the global path
predicted by the learned global planner agent and the actual path
driven by the demonstrator in the future. The average Hausdorff
distance between the move_base global path and the demon-
strated path in a held out test set is 1.25. However, after training
the BC global planner agent on SCAND, the average Hausdorff
distance between the predicted trajectory and the demonstrated
trajectory is improved at 0.26. Fig. 5 shows a scenario involving
the robot, and a human walking across the robot’s path. We see
that in this scenario, the predicted path closely matches that of the
socially compliant demonstrated path, whereas move_base
turns in the direction of the human’s future state, creating an
undesired interaction.

To validate the learned local planner agent, we conduct real-
world experiments using the Spot robot with fourteen human

Fig. 5. An example sequence of three BEV lidar frames of a human walking
across the robot’s (green box) path. Green path shows the demonstrated trajec-
tory, red path shows the move_base global path, and the yellow path shows
the predicted trajectory by the learned BC agent. In frame 2, the move_base
path moves in the direction of the human’s future state, whereas the learned path
closely follows the desired socially compliant path.

Fig. 6. Evaluating the local planner agent trained using Behavior Cloning on
SCAND. Scenario on the left shows a stationary human in the robot’s path and
the scenario on the right shows a human walking to the location of the robot.
The robot is evaluated on social compliance and safety as it navigates to its goal
position.

participants in an indoor location. We design two scenarios—
static and dynamic—to evaluate the social compliance and safety
of the learned local planner and the move_base planner, as
shown in Fig. 6. In the static scenario, the robot starts five meters
ahead of a stationary human in the robot’s path, and tries to
navigate to a goal position five meters behind the human. In
the dynamic scenario, the robot and the human start facing each
other 10 meters apart and try to reach the start position of the
other. In the dynamic scenario, the participants were asked to
navigate in a socially compliant manner to their goal position
and in both scenarios, the participants were asked to observe the
navigation behavior of the robot. After each scenario, for both
the algorithms, a questionnaire was presented to the participant
with the two following questions:

1) On a scale of 1 to 5, how “socially compliant” do you
think the robot was? (think of social compliance as how
considerate the robot was of your presence)

2) On a scale of 1 to 5, how “safe” did you feel around the
robot?

We randomized the order in which the two algorithms
(move_base and BC policy) were played to the participants.
Fig. 7 shows the responses of the human participants. On aver-
age, more humans felt the imitation learning agent trained on
SCAND was more socially compliant (SCAND mean = 4.39, sd =
0.99; move_base mean = 2.86, sd = 0.82) and safer (SCAND
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Fig. 7. Mean and standard deviation of scores assigned by the fourteen human
participants in the evaluation study for the learned local planner.

mean = 4.71, sd = 0.70; move_base mean = 2.89, sd =
1.18) than themove_base agent. The results for both questions
are statistically significant as tested by a One-Way Analysis of
Variance (ANOVA) (Safe F1,55 = 47.87, p < 0.001; Socially
Compliant F1,55 = 38.67, p < 0.001). This is expected since
the move_base agent is not designed to exhibit social compli-
ance. Refer to the attached supplementary video for scenarios
showing the behavior of both the algorithms in the static and
dynamic trials. The results of this study support our hypothesis
that imitation learning using demonstrations provided in SCAND

produces socially compliant navigation policies. In the interest
of reproducibility, we provide the 75%–25% train-test splits of
the trajectories collected using the Spot robot in SCAND.

While we show here that the BC agent is able to handle simple
social navigation scenarios, better imitation learning algorithms
may be needed to handle more sophisticated social navigation
scenarios that are present in SCAND.

V. ANTICIPATED USE CASES

Although SCAND includes a wide variety of social navigation
scenarios, there may be novel interactions that are less frequent.
To improve generalizability of a learning based approach to
unseen situations, exploring representation learning for social
navigation with SCAND is a promising future direction. SCAND

was collected in a single city (Austin, Texas, USA) and might
incorporate regional biases such as staying to the right of the
road, or overtaking pedestrians from the left. This potential bias
raises a need for algorithms, evaluations, and metrics for social
navigation that are flexible enough to work in the presence of
different local norms.

Evaluating social navigation policies is an active area of
research in the navigation community [10], [38]–[40]. While
benchmarking social navigation policies is out of scope for this
paper, existing simulation-based navigation benchmarks such
as SocNavBench [40] that use human-only trajectories could be

augmented and improved using human-robot interaction trajec-
tories in SCAND. Similarly, another interesting future research di-
rection is to explore Real-to-Sim transfer [41]–[44] with SCAND

and improve parameterized simulated social navigation envi-
ronments to generate more realistic social interactions between
virtual agents, directly benefiting data hungry approaches such
as reinforcement learning.

Other directions for future work that could directly benefit
from SCAND include trajectory prediction, trajectory classifi-
cation, and inverse reinforcement learning for large-scale cost
function learning. Previously, work on trajectory prediction
and classification has used human-only [45] or robot-only [46]
trajectories, but with access to SCAND, exploring human-robot
trajectories is an interesting direction for future work. The work
by Wulfmeir et al. [47] utilized static scenarios to learn a
cost function for autonomous robot navigation using Maximum
Entropy Deep Inverse Reinforcement Learning (MEDIRL). Ap-
plying MEDIRL on SCAND to learn cost functions that incorporate
social compliance is also an interesting direction for future
work.

VI. CONCLUSION

In this work, we introduce the Socially CompliAnt Navigation
Dataset (SCAND), a large-scale dataset of demonstrations for mo-
bile robot social navigation. SCAND contains 8.7 hours, 138 tra-
jectories, 25 miles of socially compliant driving demonstrations,
collected on two morphologically different robots. In addition
to the multi-modal sensory data streams from the two robots,
SCAND also contains labeled annotations of social interactions
for all trajectories. We illustrate the usefulness of SCAND for an-
swering a variety of questions related to social navigation. First,
we show that there exists more than one strategy for socially
compliant navigation by training a neural network classifier
on the task of demonstrator classification. Second, we train a
behavior cloning agent on the demonstrations from SCAND and
show that it is possible to learn both a socially compliant global
and local planner for mobile robot navigation using SCAND.
We further validate the performance of the behavior cloned
local planner through human trials on two social navigation
scenarios and show that the participants perceived the imitation
learning agent to be relatively more socially compliant and safe,
compared to a naive move_base agent.
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