
Team Coordination on Graphs: Problem, Analysis, and Algorithms

Manshi Limbu, Yanlin Zhou, Gregory Stein, Xuan Wang, Daigo Shishika, and Xuesu Xiao

Abstract— Team Coordination on Graphs with Risky Edges
(TCGRE) is a recently emerged problem, in which a robot
team collectively reduces graph traversal cost through support
from one robot to another when the latter traverses a risky
edge. Resembling the traditional Multi-Agent Path Finding
(MAPF) problem, both classical and learning-based methods
have been proposed to solve TCGRE, however, they lacked
either computation efficiency or optimality assurance. In this
paper, we reformulate TCGRE as a constrained optimization
and perform rigorous mathematical analysis. Our theoretical
analysis shows the NP-hardness of TCGRE by reduction from
the Maximum 3D Matching problem and that efficient de-
composition is a key to tackle this combinatorial optimization
problem. Further more, we design three classes of algorithms to
solve TCGRE, i.e., Joint State Graph (JSG) based, coordination
based, and receding-horizon sub-team based solutions. Each of
these proposed algorithms enjoy different provable optimality
and efficiency characteristics that are demonstrated in our
extensive experiments.

I. INTRODUCTION

Multi-Agent Path Finding (MAPF) is a trending problem
in robotics [1]–[6], as it lies in the core of many robotic
applications, e.g., drone swarm control [2], autonomous
delivery [7], and public transportation scheduling [1]. Adding
the possibility of team coordination [8] between robots
to MAPF makes the problem more difficult. The need of
coordination behaviors on large-scale multi-robot planning
problems may exceed the computation capability of a cen-
tralized planner [9], giving rise to decentralized planning that
distributes the computation into each robot [10]. However,
despite the efficiency, dexterity, and responsiveness, the
distribution itself may induce certain performance degrada-
tion and lead to suboptimal team coordination behaviors.
Therefore, some centralized pre-planning is still crucial for
multi-robot planning, especially for large-scale problems.

Team Coordination on Graphs with Risky Edges
(TCGRE) [11] is such a centralized planning problem in
an environment represented as a graph—multiple robots
travel from their start to goal nodes with possible support
from some nodes to reduce the cost of traversing certain
risky edges, requiring team coordination behaviors to reduce
the total cost of team graph traversal. By converting the
environment graph to a Joint State Graph (JSG), optimal
coordination can be solved using Dijkstra’s search algorithm
on the JSG [11]. However, the conversion to JSG does not
scale well with large environment graphs and number of
robots. To address the curse of dimensionality, a Critical Joint
State Graph (CJSG) approach has been proposed for large
graphs with a small amount of support with up to two robots,

George Mason University {klimbu2, yzhou30, gjstein, xwang64,
dshishik, xiao}@gmu.edu.

still assuring solution optimality. Reinforcement Learning
(RL) has been utilized [12] to reduce the time complexity
and scale the solution to a large group of robots and the size
of the graph, but at the cost of sacrificing optimality.

To acquire theoretical insights into this problem, we refor-
mulate TCGRE in a constrained optimization framework and
present rigorous mathematical analysis of this reformulated
problem. We prove the NP-hardness of TCGRE by reduction
from the Maximum 3D Matching problem. We further show
that such a difficult combinatorial optimization problem
can be effectively addressed by efficient decomposition. In
addition to providing a theoretical explanation for previous
algorithms, we further introduce three distinct classes of
methods to solve the TCGRE problem: (1) Based on the idea
of JSG, we introduce new search algorithms that do not need
to fully construct the JSG in advance and can be guided
by a new admissible heuristic, while guaranteeing optimal
solutions; (2) Inspired by the Conflict-Based Search [13], the
second class of algorithms is based on coordination and we
design a Coordination-Exhaustive Search (CES) algorithm.
CES starts with individual optimal paths and finds the lowest
cost among every possible coordination for every robot to
achieve the optimal solution within polynomial time with
respect to the number of robots, under the assumption that the
coordination between every pair of support node and risky
edge is only necessary for a limited number of times; (3)
Motivated by CES’s assumption, we also propose a class of
receding-horizon sub-team solutions that further decomposes
the order of coordination by only looking at sub-team coor-
dinations in a local region. We design a Receding-Horizon
Optimistic Cooperative A* (RHOC-A*) search, in order to
reduce the time complexity without much performance loss.
Extensive experiment results are presented and discussed to
inform best ways to solve different TCGRE problems.

II. RELATED WORK

We first review related work on the classical MAPF prob-
lem and common classes of algorithms. We then review
previous approaches to solve the TCGRE problem.

A. MAPF and Classes of Algorithms

MAPF is a specific type of multi-agent planning problem
with a key constraint that no agents can collide with one
another [14]. A feasible solution to the problem is a joint
plan that allows all agents to reach their goals from their
starts. Two common objectives are makespan and total cost.
Classical MAPF problem may include extra assumptions,
such as no vertex conflict, no edge conflict, no cycle conflict,
and no swapping conflict [15], [16].

Algorithms to solve MAPF include A*-based search
with exponential space and time compelexity [15], [17],
conflict-based search [13] by decomposing into many con-
strained single-agent problems, reduction-based approaches
to SAT [18], [19], ILP [20], ASP [21], or CSP [22], [23],
rule-based algorithms based on Kornhauser’s algorithm [24],
Push-and-Rotate [25], or BIBOX [26], and suboptimal solu-
tions [27], [28] to sacrifice optimality for efficiency.

MAPF is NP-hard [29], and no optimal solutions can be
found in polynomial time. The time complexity of all above
optimal algorithms [13], [15], [17]–[23] is exponential to the
number of agents. Similarly, we prove in this paper that our
TCGRE problem that utilizes, instead of avoiding, interactions
between agents in the form of support is also NP-hard.

B. Team Coordination on Graphs with Risky Edges (TCGRE)

TCGRE [11] is a recently proposed problem, in which a
team of robots traverse a graph from their starts to goals
and also support each other while traversing certain risky
(high-cost) edges to reduce overall cost. Instead of focusing
on collision-free paths in the traditional MAPF, the TCGRE
problem pursues team coordination. To solve TCGRE, Limbu
et al. [11] have proposed JSG and CJSG, both of which con-
struct a single-agent joint-state graph. After the construction,
the original team coordination problem can be solved using
Dijkstra’s algorithm to solve a shortest path problem with
optimality guarantee. The CJSG construction deals with the
team coordination problem more efficiently, although it can
only solve problems with two agents. To scale up TCGRE,
RL [11] has been utilized to handle many nodes and robots,
but at the cost of optimality.

In this work, we reformulate the TCGRE in a constrained
optimization framework and conduct mathematical analysis
of this problem. We prove its NP-hardness and point out the
necessity of efficient decomposition to effectively solve this
problem. We further present three classes of algorithms to
solve TCGRE from different perspectives.

III. PROBLEM FORMULATION

Assuming a team of N homogeneous robots traverse an
undirected graph G = (V,E), where V is the set of nodes the
robots can traverse to and E is the set of edges connecting
the nodes, i.e., E ⊂ V × V. The team of robots traverse
in the graph from their start nodes V0 ⊂ V to goal nodes
Vg ⊂ V via edges in E. Each edge eij = (Vi, Vj) ∈ E is
associated with a cost cij , depending on its length, condition,
traffic, obstacles, etc. Specially, some edges with high costs
are difficult to traverse through, denoted as risky edges
E′ ⊂ E, but with the support from a teammate from a
supporting node, their costs can be significantly reduced to
c̃ij . In this problem, we only consider such coordination
behaviors between two robots. In one coordination behavior,
one receiving robot receives support while traversing a risky
edge, and another supporting robot offers support from some
(nearby) location, called support node. Note that each risky
edge eij ∈ E′ corresponds to certain support node(s) Seij ⊂
V (Seij = ∅ if eij /∈ E′). Additionally, the coordination

also induces some cost for the supporter, denoted by c′. A
central planner needs to schedule the paths of all agents and
coordination on their ways.

A. Action & Cost Model

Without coordination, at each time step t, a robot n can
choose to stay where it is, or move to its neighbor (Vi

is the neighbor of Vj if eij ∈ E). Its movement can be
denoted by M t

n = (ltn, l
t+1
n) ∈ E, where ltn, l

t+1
n ∈ V

indicate its current and next location and lt+1
n is a neighbor

of ltn. Specially, the robot stays at its current location if
lt+1
n = ltn with zero cost, i.e., cii = 0,∀i. The movement set

can thus be denoted by M = {M t
n|∀n,∀t}. Moreover, the

movement decision M t
n can be rewritten as an 0/1 variable

Mnt
ij , where Mnt

ij = 1 represents edge eij is selected by
robot n at time t, and 0 otherwise. A robot can only move
once at each time step to a neighbor node or not at all,
i.e.,

∑
∀eij∈Nltn

Mnt
ij = 1 &

∑
∀eij /∈Nltn

Mnt
ij = 0, where

Nltn
= {(ltn, lt+1

n)|∀(ltn, lt+1
n) ∈ E}. The movement set can

thus be denoted by M = {Mnt
ij |∀i, j, ∀n, ∀t}.

When a coordination behavior is available—when robot n
is going to traverse a risky edge, another robot m happens to
be at one of the support nodes of the risky edge or vice versa,
i.e., M t

n ∈ E′ and ltm ∈ SMt
n

, or M t
m ∈ E′ and ltn ∈ SMt

m
—

the robot pair needs to decide whether to provide/receive
support. Denote the coordination decision of agent n at time
t as stnm. It is clear that agent n’s coordination decision is
dependent on its movement decision, so the cost is twofold:
(1) When agent n has no coordination opportunity (the above
coordination behavior is not available for any other robot
m), i.e., ∀m, ltm /∈ SMt

n
and ltn /∈ SMt

m
, its cost Ct

n is only
decided by its movement, i.e., Ct

n = cij , where Mnt
ij = 1.

(2) When coordination is possible for agent n, i.e., ∃m, ltm ∈
SMt

n
or ltn ∈ SMt

m
, the cost Ct

n can be represented as

Ct
n =

cij , if stnm = 0;

c̃ij if stnm = 1;

c′, if stnm = −1.
(1)

where stnm = 1 means agent n decides to receive support
from m, stnm = −1 indicates agent n decides to offer support
to m, and stnm = 0 stands for no coordination between the
robot pair n and m at t. Specially, no coordination happens
for one single robot, i.e., stnn = 0,∀n, ∀t, or when n and m
cannot support each other, i.e., stnm = 0 if ∀m, ltm /∈ SMt

n

and ltn /∈ SMt
m

. The coordination decision set can be written
as S = {stnm|∀n,m,∀t}. In addition, a coordination decision
is made for a pair, so stnm+stmn = 0 for every pair of robots.
Furthermore, the robots can wait now (no movement) for
future coordination, but there is no point for all robots to
stay still at the same time, i.e.,

∑
∀n

∑
∀i ̸=j M

nt
ij ̸= 0.

B. Problem Definition

Given the node set V, the edge set E, support nodes
for each edge Seij , cost of each edge without and with
coordination cij , c̃ij , N robots with their starts V0 and goals
Vg , optimize the movement and coordination decisions M
and S, in order to minimize the total cost for each agent

1 2 3 4

5 6 7 8

Robot Icon: https://www.flaticon.com/free-icon/robot_6134346

𝑐𝑐𝐺𝐺

𝑐𝑐𝐵𝐵

𝑐𝑐𝑅𝑅

Support Pairs (Risky Edges and Support Nodes)
Other Edges
Individual Optimal Path for (1,4)
Individual Optimal Path for (5,8)
Individual Optimal Path for (9,12)

Cost 𝐶𝐶0 = 𝑐𝑐𝐺𝐺 + 𝑐𝑐𝐵𝐵 + 𝑐𝑐𝑅𝑅

9 10 11 12

𝐺𝐺

𝐵𝐵

𝑅𝑅

SP1

2

5 6

RP1

RP2

RP3

RP4

RP5

RP6

SP2
3

7

2

Order 1

Order 2

X

Y Z

One Matching 𝑴𝑴 = { 𝑿𝑿1,𝒀𝒀1,𝒁𝒁1 , 𝑿𝑿5,𝒀𝒀2,𝒁𝒁2 }

X: Which Robot Pairs (RP)
Y: Which Support Pairs (SP)
Z: Orders of the Support/Robot Pairs

∅

𝐺𝐺

𝐺𝐺

𝐺𝐺

𝐺𝐺

𝐵𝐵

𝐵𝐵

𝐵𝐵

𝐵𝐵

𝑅𝑅

𝑅𝑅

𝑅𝑅

𝑅𝑅

1 2 3 4

5 6 7 8

9

𝑐𝑐𝐺𝐺

𝑐𝑐𝐵𝐵

𝑐𝑐𝑅𝑅

Weight 𝑴𝑴 = 𝐶𝐶0 − 𝐶𝐶′

Cost with SP1 and SP2: 𝐶𝐶𝐶 = 𝑐𝑐𝐶𝐺𝐺 + 𝑐𝑐𝐶𝐵𝐵 + 𝑐𝑐𝐶𝑅𝑅

10 11 12

Support Pairs (Risky Edges and Support Nodes)
Optimal Path for (1, (6), 4)
Optimal Path for (5, (2,7), 8)
Optimal Path for (9, (5,2), (3), 12)

𝐺𝐺

𝐵𝐵

𝑅𝑅

Fig. 1: Reduction from Maximum 3D Matching (Middle) to TCGRE (Left and Right) and Inspiration for CES.

to traverse from its start to its goal within a time limit T .
Formally, the problem can be represented as

min
M,S

T−1∑
t=0

N∑
n=1

Ct
n. (2)

s.t.
∑

∀m∈{1,2,...,N}

|stnm| ≤ 1,

∀n ∈ {1, 2, ..., N},∀t ∈ {0, 1, ..., T − 1}. (3)
stnm, stmn ∈ {−1, 0, 1}, stnm + stmn = 0,

∀n,m ∈ {1, 2, ..., N},∀t ∈ {0, 1, ..., T − 1}. (4)

l0n = V0(n),∀n ∈ {1, 2, ..., N}. (5)

lTn = Vg(n),∀n ∈ {1, 2, ..., N}. (6)∑
∀eij∈Nltn

Mnt
ij = 1,

∑
∀eij /∈Nltn

Mnt
ij = 0,

∀n ∈ {1, 2, ..., N},∀t ∈ {0, 1, ..., T − 1}. (7)∑
∀n

∑
∀i̸=j

Mnt
ij ̸= 0,

∀t ∈ {0, 1, ..., T − 1}. (8)

Eqn. (2) suggests the goal of the problem is to minimize the
total cost of all agents across all time steps with two decision
variables, movement setM and coordination set S. Eqn. (3)
indicates, at each time step, each robot can participate in
at most one coordination behavior. Eqn. (4) regulates that,
at each time step, one coordination behavior only occurs
between one robot pair. Eqn. (5) and Eqn. (6) set the start
and the goal for each robot. Eqn. (7) guarantees, at each time
step, a robot can only move to a neighbor node or stay still.
Eqn. (8) assures no unnecessary stagnation.

IV. MATHEMATICAL ANALYSIS

In this section, we prove our TCGRE problem reduces from
the Maximum 3D Matching problem, a NP-hard problem.
Then, we start a rigorous analysis on the mathematical prob-
lem, which suggests decomposition is a promising solution
to this combinatorial optimization problem.

A. NP-Hardness
Definition 1. Maximum 3D Matching: X,Y,Z are 3 finite
sets. T is the subset of X ∗ Y ∗ Z, with triples (x, y, z),
where x ∈ X, y ∈ Y, z ∈ Z. M ⊂ T is a 3D matching if
for any two distinct triples (x1, y1, z1) and (x2, y2, z2) ∈M,
we have x1 ̸= x2, y1 ̸= y2, and z1 ̸= z2; each triple has a
weight w(xi, yj , zk). Maximum 3D Matching problem is to
find a 3D matching with maximum total weight.

Theorem 1. Maximum 3D Matching reduces to TCGRE.
Proof sketch: Without coordination, we can generate indi-
vidual optimal paths for all robots; the cost is C0 (Fig. 1
left). With coordination, we let some robot pairs take detours
to the support pairs (i.e., one risky edge and one support
node); the new cost is C ′, where the first robot in the pair
traverses the risky edge while the second visits and supports
from the support node (Fig. 1 right). Minimizing total cost
is equivalent to maximizing the cost reduction C0 − C ′.

Consider X contains all robot pairs; Y is the set of all
support pairs plus an empty set element; Z is a list of time
orders of events (time steps are not necessarily needed, be-
cause robots can stay still and wait, Fig. 1 middle). Consider
the weight w(xi, yj , zk) as the sum of cost reduction through
coordination for robot pair xi to detour to support pair yj
with time order zk. The weight of a 3D matching M is the
total cost reduction of all robots, C0 − C ′. Maximum 3D
Matching is to find the paths for all robot pairs to achieve
maximum total cost reduction from their original without-
coordination costs, which is a specific case of the general
TCGRE problem that only needs to use each robot and support
pair once with a smaller solution space than TCGRE.

Since TCGRE reduces from Maximum 3D Matching, a
classical NP-hard problem [30], TCGRE is also NP-hard. We
cannot find an optimal solution in polynomial time.

B. Problem Analysis
Because we only care about the total cost of all robots,

and every coordination requires a robot pair, we can reassign
the coordination cost c′ from the supporter to the receiver in
addition to the reduced edge cost c̃ij , without changing the
problem. So, the cost with coordination in Eqn. (1) becomes

Ct
n =

cij , if stnm = 0;

ĉij , if stnm = 1;

0, if stnm = −1.
(9)

where ĉij = c̃ij + c′. Therefore, the original objective
function (Eqn. (2)) can be rewritten as

min
M,S

T−1∑
t=0

N∑
n=1

∑
∀i ̸=j

Mnt
ij [(1− stnm)cij + stnmĉij], (10)

s.t. (3), (4), (5), (6), (7), (8).

Notice that because when stnm = −1, Mnt
ij = 0,∀i ̸= j, the

last if condition in Eqn. (9) does not need to be considered in
Eqn. (10). To solve the combinatorial optimization problem,
a typical approach is dynamic programming [31], by de-
coupling the interdependency among the decision variables.
The ideal case is to break down the problem into two sub-
problems: one optimizing the movement decisions M and
the other optimizing the coordination decisions S.

Based on such a motivation, if we can find a way to
eliminate n from Mnt

ij , Eqn. (10) can be rewritten as

min
M

T−1∑
t=0

∑
∀i ̸=j

Mnt
ij︸ ︷︷ ︸

Sub-Problem 2

min
S

N∑
n=1

[(1− stnm)cij + stnmĉij]︸ ︷︷ ︸
Sub-Problem 1

. (11)

The first half of the function contains only the movement
decisions M, while the second half only has the coordina-
tion decisions S. Then, decomposition is possible and the
NP-hard TCGRE problem can be solved with significantly
reduced complexity.

V. SOLUTIONS

Based on the mathematical analysis, we propose three
classes of algorithms to solve TCGRE from different perspec-
tives with different optimality and efficiency characteristics.
We first propose a class of JSG-based solutions that utilizes
the decomposition of the original problem and provides
optimal solutions to the two sub-problems (Eqn. 11). Second,
to reduce the time complexity, we focus on coordination
(i.e., S) and propose a class of coordination-based solutions
that decomposes the problem differently. To be specific, we
introduce Coordination-Exhaustive Search (CES), which can
achieve optimal solutions under a reasonable assumption
that each coordination behavior (i.e., support pair composed
of support node and risky edge) is only needed for a
constant time in the optimal solution. Finally, when the
same support may need to be repeated many times and the
global optimality does not need to be guaranteed, a class of
algorithms that focuses only on local sub-team coordination
behaviors are introduced, for which we develop Receding-
Horizon Optimistic Cooperative A* (RHOC-A*).

A. JSG-Based Solutions
JSG-based solutions perform the decomposition into the

two sub-problems by 1) implicitly solving S by calculating
the minimum edge cost for each edge in the JSG; and 2)
explicitly solving M by solving a single-robot shortest path

problem with S implicitly encoded. As mentioned in Sec. IV-
B, n is effectively eliminated from Mnt

ij by building the JSG.
1) JSG Construction: In the action model (Sec. III-A),

we use ltn ∈ V to represent robot n’s location at time
t. In a joint state graph, however, one state is the set of
all robots’ locations Lt = {lt1, lt2, ..., ltN}. The new node
set is L = VN and each node Lp ∈ L correlates to N
nodes (Vi1 , Vi2 , ..., Vin) in V. By checking the constraints
in Eqns. (3), (4), (7), and (8), for each pair of joint-states,
we can form the new edge set M ⊂ L2. Specially, Eqn. (8)
assures no self-loops in the JSG. An action is the move from
current state to next state Mt = (Lt,Lt+1), which can also
be written as a 0/1 variable, i.e., Mt

pq =
∏N

n=1 M
nt
ij , where

epq is any edge in the new edge set, and the movement
decision set becomes M = {Mt|∀t}.

2) Sub-Problem 1: After the construction of JSG, the
second half of Eqn. (11) is calculating the minimum edge
cost for each epq ∈ M by optimizing S, which is a
0/1 Integer Linear Programming (ILP) problem and can be
solved by classical methods, such as Branch and Bound [32].

3) Sub-Problem 2: After solving sub-problem 1, we have
the cost Cpq for each edge epq ∈ M. Sup-problem 2 is to
optimize movement decisions M to minimize the total cost:

min
M

T−1∑
t=0

∑
∀epq∈M

Mt
pqC

t
pq, (12)

Now it is a single-robot shortest path problem with non-
negative costs and no self-loops solvable by any shortest
path algorithms. Instead of using Dijkstra’s algorithm on a
fully constructed JSG beforehand [11], we present results
with Uniform Cost Search (UCS) and A* (guided by an
admissible heuristics assuming all future risky edges will be
supported by a teammate) while constructing JSG on the fly,
i.e., interleaving partial solutions of the two sub-problems.

B. Coordination-Based Solutions

Some JSG edge costs are simply the sum of individual edge
costs of all robots, suggesting possible total cost separation
into the costs with and without coordination. Thus, while
minimizing costs without coordination can be simply solved
for individual robots, the second class of algorithms focuses
on coordination. Specifically, we present a Coordination-
Exhaustive Search (CES) algorithm based on a slightly dif-
ferent and interleaving decomposition of Eqn. (10):

min
M,S

Cost without Coordination︷ ︸︸ ︷
T−1∑
t=0

N∑
n=1

∑
∀eij∈E

Mnt
ij cij − (13)

T−1∑
t=0

N∑
n=1

ltn=lt+1
n ∈⋃N

m=1 SMt
m∑

∀eij∈E′or

1

2
Mnt

ij [(1− stnm)cij + (1 + stnm)∆cij]︸ ︷︷ ︸
Cost Reduction due to Coordination

.

where ∆cij = cij − ĉij . When stnm = 1 (receiving support)
the second part reduces the cost in the first part by ∆cij ;
When stnm = −1 (providing support), the cost is reduced to

zero. Inspired by Conflict-Based Search, we can start with
finding the individual shortest path for each robot without
coordination. Then, we find the coordination behaviors (with
some detours) that can cause the maximum cost reduction.

While the first half can be solved individually for each
robot (Fig. 1 left), CES uses an exhaustive search for the
second half. If an optimal solution requires a coordination
behavior between a robot pair, it is equivalent to make the
robot pair detour to the support pair (risky edge and support
node) from their original individual shortest paths, while
other robots remain on their individual shortest paths (Fig. 1
right). This robot pair’s shortest paths are a combination of
two path segments—their shortest paths from their starts to
the support pair, and their shortest paths from the support pair
to their goals. Given certain coordination behaviors, we can
solve the shortest path and minimum total cost of all robots
for each path segment (Fig. 1 right), as shown in Alg. 1.

CES is a coordination-based method through an exhaustive
search. Because one support pair may be assigned to the
same/different robot pair(s) for infinite times, to conduct an
exhaustive search, we assume each support pair can only
occur for a fixed number of times. In our implementation,
we assume a support pair can only happen once, but it can
be easily expanded to a more general case, by repetitively
adding the same support pairs to the coordination set.

The CES algorithm is shown in Alg. 2: In lines 1-2,
using any shortest path algorithm, it generates an individual
optimal path and cost for each robot, with original edge costs
c = {cij |∀eij ∈ E} and reduced edge costs ĉ = {ĉij |∀eij ∈
E}, called pessimistic/optimistic paths P1/P2 and total cost
C1/C2. If C1 = C2, which means no coordination is
needed in the optimal solution, then simply return P1 and
C1 (lines 3-4). Else, it starts the scheduling process. In
line 5, it generates a coordination set, CS that contains all
coordination behaviors, and SCS that contains all subsets
of CS, to decide which coordination behaviors/support pairs
are needed. In line 6, it generates a set of all robot pairs RP
(order in the pair matters since we need to decide which robot
moves to the support node/risky edge) to determine which
robot pair should be assigned to each support pair. Now,
it looks like a Maximum 3D Matching problem as stated in
Definition 1, except that the matching problem has one more
assumption that one robot pair can be only assigned once
as shown in Fig. 1 middle. For all possible sets of support
pairs (line 8), it generates all possible time orders for this
support pair set using permutation (line 9). Notice that robots
can wait for one another, so the order of each coordination
behavior, not necessarily the exact time step, is sufficient.
Then, it iterates through every possible support pair order
(line 10). There could be N(N − 1) possible robot pairs
assigned to each support pair, so a N-Fold Cartesian Product
is applied to generate all possible sets of support robot pairs
(line 11). Then, it explores every set (line 12), where each
robot pair in SRP is assigned to each support pair in PSCS
with the same index. Thus, in lines 13-18, it adds the risky
edge of each support pair to the individual coordination set
of the first robot of the robot pair, and the support node of

each support pair to the individual coordination set of the
second robot of the robot pair. ICS then contains individual
coordination set of all robots. With ICS, we use Alg. 1 to
calculate the shortest paths and minimum total cost of this
assignment in line 19, which is one solution. Last, lines 20-
21 records the best solution with minimum total cost. To sum
up, the loop in line 8 decides a subset of support pairs we
need for cost reduction. The loop in line 10 decides an order
for the subset. The loop in line 12 selects a robot pair for
each support pair in the subset. Iterating through the three
loops explores every possible solution under the assumption
that each support pair can be applied for a constant number
of times, making CES optimal.

Algorithm 1: CostCalculation (G,V0,Vg, ICS)

1 P = [∅] ∗N ;
2 totalcost = 0;
3 for n = 1 to N do
4 if ICS[n] = ∅ then
5 P, C = ShortestPath(G,V0[n],Vg[n], c);
6 P[n] = P;
7 totalcost = totalcost+ C;
8 else
9 for item ∈ ICS[n] do

10 start = V0[n];
11 if item is a risky edge then
12 P, C =

ShortestPath(G, start, item[0], c);
13 P[n].extend(P

⋃
item);

14 totalcost = totalcost+ C + ĉitem;
15 start = item[1];
16 else if item is a support node then
17 P, C =

ShortestPath(G, start, item, c);
18 P[n].extend(P);
19 totalcost = totalcost+ C;
20 start = item;

21 P, C = ShortestPath(G, start,Vg[n], c);
22 P[n].extend(P);
23 totalcost = totalcost+ C;

24 return P, totalcost

There are total O(2|CS|) subsets in SCS . For each subset,
there are O(|CS|!) permutations. For every permutation,
there are O(N2) possible robot pairs for each support pair,
totally O(N2|CS|) assignments. Therefore, the number of
possible solutions is O(2|CS| ·N2|CS| · |CS|!) = O((2N2)|CS| ·
|CS|!). For each solution, we run the shortest path algo-
rithm for O(|CS|) times, each run costs O(|E|log(|V|)).
Therefore, the time complexity of CES is O((2N2)|CS| ·
|CS|! · |E|log(|V|)), which is not exponential to the number
of robots N anymore. Note that the above algorithm is
for directed graphs. For an undirected graph, each edge is
actually two directed edges in a directed graph, so after line

Algorithm 2: CES (G,V0,Vg)

1 P1, C1 = MultipleShortestPath(G,V0,Vg, c);
2 P2, C2 = MultipleShortestPath(G,V0,Vg, ĉ);
3 if C1 ≤ C2 then
4 return P1, C1;

5 Generate subsets SCS = {SCS|∀SCS ⊂ CS} of the
coordination set CS;

6 Generate a set of all robot pairs RP;
7 Pmin, Cmin ← P1, C1;
8 for SCS ∈ SCS do
9 PSCS = AllPermutations(SCS, len(SCS));

10 for PSCS ∈ PSCS do
11 SRP =

CartesianProduct(RP, len(PSCS));
12 for SRP ∈ SRP do
13 ICS = [∅] ∗N ;
14 for n = 1 to len(PSCS) do
15 SP = PSCS[n];
16 RP = SRP[n];
17 ICS[RP [0]].append(SP [0]);
18 ICS[RP [1]].append(SP [1]);

19 P, C =
CostCalculation(G,V0,Vg, ICS);

20 if C < Cmin then
21 Pmin, Cmin ← P, C;

22 return Pmin, Cmin.

10, there should be an additional loop that iterates through
all possible directions of selected risky edges, which won’t
change the time complexity class.

C. Receding-Horizon Sub-Team Solutions

TCGRE’s computation complexity arises from two fronts,
the large size of the graph and the team. Therefore, the third
class of algorithms reduces the complexity from both fronts
by planning with a limited horizon and for a sub-team of
all robots at a time, efficiently facilitating local coordination
while compromising global optimality. Such sub-team local
coordination within the receding horizon prioritizes actions
that yield the best short-term outcomes and potentially allows
dynamic adaptation to changing circumstances, e.g., updated
graph structure from robot perception. One specific algorithm
is Receding-Horizon Optimistic Cooperative A* (RHOC-A*),
which provides flexible and efficient solution by assuring
optimal robot pair coordination within the horizon while
assuming optimistic cooperation beyond the horizon (Fig. 2).
Alg. 3 presents RHOC-A*. All robots are initially not at
their goals and therefore on duty (lines 1-2). We compute
the heuristic for all nodes assuming always-available support
(line 3). RHOC-A* iterates until all robots arrive at their
goals (lines 4). If there is still at least one pair of robots
on duty (line 5), RHOC-A* sequentially plans for each robot
pair (lines 6-7). The computation efficiency is enabled by
only looking at a small JSG with only two robots, n and m,
within K steps (lines 8-12). Notice that optimality is assured

(K = 1)

𝑙𝑙𝐺𝐺𝑡𝑡

𝑙𝑙𝐵𝐵𝑡𝑡

h 𝑙𝑙𝐺𝐺𝑡𝑡 = MinOptimisticCost 𝑙𝑙𝐺𝐺𝑡𝑡 ,𝑔𝑔𝑔𝑔𝑔𝑔𝑙𝑙𝐺𝐺 , ĉ
h 𝑙𝑙𝐵𝐵𝑡𝑡 = MinOptimisticCost 𝑙𝑙𝐵𝐵𝑡𝑡 ,𝑔𝑔𝑔𝑔𝑔𝑔𝑙𝑙𝐵𝐵, ĉ

𝐺𝐺

𝐵𝐵

𝑅𝑅

1 2 3 4

5 6 7 8

9

𝑔𝑔𝑔𝑔𝑔𝑔𝑙𝑙𝐺𝐺

10 11 12

Receding
Horizon

Possible K-Step Moves for 𝐺𝐺
Possible K-Step Moves for 𝐵𝐵

h 𝑙𝑙𝐺𝐺𝑡𝑡 , 𝑙𝑙𝐵𝐵𝑡𝑡 = h 𝑙𝑙𝐺𝐺𝑡𝑡 + h(𝑙𝑙𝐵𝐵𝑡𝑡)

Other Edges
Support Pairs

𝑔𝑔𝑔𝑔𝑔𝑔𝑙𝑙𝐵𝐵
𝔾𝔾𝐺𝐺𝐵𝐵

Fig. 2: Receding-Horizon Optimistic Cooperative A*.

on this small JSG while the cost-to-go on the horizon K is
estimated by the always-available support heuristic. Lines
13-18 address the situation where only one robot is on duty,
who has to traverse to its goal alone.

For N robots, generating all possible pairs of robots can be
done in O(N2) time. RHOC-A*’s time complexity for each
pair’s search of K steps can be approximated as O(bK),
where b = O(|E||V|) is the effective branching factor in the
joint action space. Thus, in K steps, running RHOC-A* for
all pairs results in complexity of O(N2(|E||V|)

K). There will
be no cycles for any robot, due to graph search. As a result,
there will be at most O(|V |) steps for each robot, so we
need to run the K-step A* search for |V |

K times for one
robot pair. There will be N

2 runs for N robots. Therefore,
the time complexity of the algorithm is O(N3 · |V |

K · (
|E|
|V|)

K).

Algorithm 3: RHOC-A*(G,V0,Vg , K)

1 Initialize atGoaln ← False, ∀n ∈ {1, 2, ..., N}
2 OnDuty = {n|∀n, atGoaln = False}
3 Compute optimistic heuristic h(·) for each node in G
4 while len(OnDuty) ̸= 0 do
5 if len(OnDuty) ≥ 2 then
6 RP = {{n,m}|∀n,m ∈ OnDuty}
7 for each pair {n,m} ∈ RP do
8 Initialize a K-step JSG Gnm for the pair

{n,m} with start {ltn, ltm};
9 if not atGoaln,m then

10 A* on Gnm for K steps using h(·);
11 Update ltn, l

t
m, atGoaln,m, and

OnDuty;
12 Update individual and total costs;

13 else
14 n = OnDuty.pop();
15 Initialize K-step graph Gn with start ltn;
16 A* on Gn for K steps using h(·);
17 Update ltn, atGoaln, and OnDuty;
18 Update individual and total costs;

19 return Paths and costs for all robots.

VI. RESULTS
We conduct experiments on a variety of graphs to evaluate

the optimality and efficiency of the three classes of proposed

4-15 4-15 4-10 4-10 3-20 3-20 3-15 3-15 3-10 3-10

3- 20
3-10

3-304-103-303-25 3-25 3-20 3-20 3-153-153-103-10

3-20 3-20 3-15 3-15 3-10 3-10

3-25 3-25 3-20 3-20 3-15 3-15 3-10 3-10

3-15
3-25

3-20
3-25

7-20
4-20

7-15
5-10

7-10

6-25
6-15

6-30

5-25
4-25

6,7,5,4-30 7,6,5,4-25-20 7,6,5,4-15 7,6,5-10

7-30 6-30 5-307-30 6-30 5-30

7-20
6-20

5-20
4-20 4-30 4-10 6-15 5-15

6-25 7-25 4-25 7,4 -15
5-25

5-10
7-10 6-10

6,7,5,4-30 7,6,5,4-25-20 7,6,5,4-15 7,6,5-10

6- 30 5-30
4-30 4-10

7-30 7-10 6-10 3-30 5-10
4-15

5-15
7-15 6-15

7-25
4-20

6-25
5-25
5-20

7-20
4-25
6-20

6-30 7,5,3-30 6-15 4-30 6-10
7,6,5,4-20 7,5-10 4-15 4-10

7 -25 6 -25 5 -25 7-15 4-25 5-15

Fig. 3: True and Naive Optimality vs. Time with JSG-UCS, JSG-A*, CES, RHOC-A*, and Naive. Each data point denotes the
result for the experiment with # of Robots–# of Nodes. For visibility, cluttered areas are magnified in the dashed boxes.

algorithms. To be specific, we implement UCS and A* for
JSG-based solutions, CES for coordination-based solutions,
and RHOC-A* for receding-horizon sub-team solutions. We
first conduct a set of large-scale, method-agnostic experi-
ments on a variety of randomly generated graphs and then
present focused experiments to study the pros and cons of
specific methods.

A. Large-Scale Method-Agnostic Experiments

To evaluate each method in an objective manner, we gen-
erate a set of graphs with randomly generated support pairs,
including sparse, moderate, and dense connectivities and five
different numbers of nodes (|V| ∈ {10, 15, 20, 25, 30}), three
graphs each type, i.e., a total of 45 distinct graphs. A total
of 900 trials are conducted with five different team sizes
(N ∈ {3, 4, 5, 6, 7}) and four methods.

We evaluate the optimality and runtime of all methods
along with a naive approach, in which each robot executes
its individual optimal path without coordination. While the
True Optimality value is defined as the optimal cost divided
by the actual cost, for scenarios where the optimal cost
cannot be found due to excessive computation, we define
Naive Optimality to be the naive cost divided by actual cost.
If a data point does not exist in Fig. 3, the corresponding
method cannot produce a solution for the robot and node
number. As shown in Fig. 3, the JSG-based solutions achieve
optimal solutions, but require significant runtime even in
small graphs with only a few robots and fail to produce a
solution when the problem becomes larger; CES has better
runtime but loses some performance because we assume each
support pair can be applied only once; with a fine-tuned K,
surprisingly, RHOC-A* in many cases achieves better results
than CES with less runtime.

Fig. 4: CES Planning Time on Graphs with Two Support Pairs

B. Focused Experiments

1) CES’s Insensitivity to Robot and Node Numbers: Fig. 4
showcases that, when there are not many support pairs, CES
works well with different numbers of robots and different
sizes of graphs (polynomial time to both N and |V|).
However, its runtime increases drastically with the number of
support pairs, as shown in our method-agnostic experiments,
which verifies our time complexity analysis (Sec. V-B).

2) RHOC-A*’s Sensitivity to Planning Horizon: Fig. 5
showcases how RHOC-A*’s computation time scales with
different planning horizons. A large horizon K comes closer
to solving the original TCGRE problem with multiple robot
pairs, which significantly increases the solution time. While
the total cost can be reduced with a longer horizon, it is
necessary to strike a balance between horizon and efficiency.

VII. CONCLUSIONS AND DISCUSSIONS

We present a systematic problem formulation and math-
ematical analysis of TCGRE, which proves its NP-hardness
and shows efficient decomposition is the key to solving this

Fig. 5: RHOC-A* Planning Time.

problem. We propose three classes of solutions with a set of
implementations and present their experiment results.

As given by the analysis in Sec. IV-B, all of the pro-
posed solutions are trying to solve a form of a decomposed
problem. For example, JSG-based solutions solve a 0/1 ILP
problem [20] and a single-agent shortest path problem,
after constructing a JSG; coordination-based solutions, like
CES, deal with a 3D matching problem embedded with
multiple single-agent shortest path problems. By applying
some approximation methods to the subproblems—for the
former, forming only a few edges instead of all feasible
edges and calculating approximate edge costs; for the lat-
ter, omitting unpromising matchings—we can significantly
reduce runtime without sacrificing too much performance.
RHOC-A*, though efficient, does not consider the order of the
robot pair selection, with which its performance can improve
while still maintaining coordination efficiency.

REFERENCES

[1] J. L. Adler and V. J. Blue, “A cooperative multi-agent transportation
management and route guidance system,” Transportation Research
Part C: Emerging Technologies, vol. 10, no. 5-6, pp. 433–454, 2002.

[2] Y. Hu, M. Chen, W. Saad, H. V. Poor, and S. Cui, “Distributed multi-
agent meta learning for trajectory design in wireless drone networks,”
IEEE Journal on Selected Areas in Communications, vol. 39, no. 10,
pp. 3177–3192, 2021.

[3] C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and
Y. Wu, “The surprising effectiveness of ppo in cooperative, multi-
agent games,” 2022.

[4] P. Surynek, “An optimization variant of multi-robot path planning
is intractable,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 24-1, pp. 1261–1263, 2010.

[5] J. Foerster, N. Nardelli, G. Farquhar, T. Afouras, P. H. Torr, P. Kohli,
and S. Whiteson, “Stabilising experience replay for deep multi-
agent reinforcement learning,” in International conference on machine
learning, pp. 1146–1155, PMLR, 2017.

[6] J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-
agent control using deep reinforcement learning,” in Autonomous
Agents and Multiagent Systems: AAMAS 2017 Workshops, Best Papers,
São Paulo, Brazil, May 8-12, 2017, Revised Selected Papers 16,
pp. 66–83, Springer, 2017.

[7] M. Liu, H. Ma, J. Li, and S. Koenig, “Task and path planning for multi-
agent pickup and delivery,” in Proceedings of the International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS),
2019.

[8] Z. Yan, N. Jouandeau, and A. A. Cherif, “A survey and analysis of
multi-robot coordination,” International Journal of Advanced Robotic
Systems, vol. 10, no. 12, p. 399, 2013.

[9] R. Luna and K. E. Bekris, “Efficient and complete centralized multi-
robot path planning,” in 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 3268–3275, IEEE, 2011.

[10] J. Capitan, M. T. Spaan, L. Merino, and A. Ollero, “Decentralized
multi-robot cooperation with auctioned pomdps,” The International
Journal of Robotics Research, vol. 32, no. 6, pp. 650–671, 2013.

[11] M. Limbu, Z. Hu, S. Oughourli, X. Wang, X. Xiao, and D. Shishika,
“Team coordination on graphs with state-dependent edge costs,” in
2023 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 679–684, IEEE, 2023.

[12] M. Limbu, Z. Hu, X. Wang, D. Shishika, and X. Xiao, “Team
coordination on graphs with reinforcement learning,” in 2024 IEEE
International Conference on Robotics and Automation (ICRA), IEEE,
2024.

[13] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence,
vol. 219, pp. 40–66, 2015.

[14] R. Stern, “Multi-agent path finding–an overview,” Artificial Intelli-
gence: 5th RAAI Summer School, Dolgoprudny, Russia, July 4–7,
2019, Tutorial Lectures, pp. 96–115, 2019.

[15] T. Standley, “Finding optimal solutions to cooperative pathfinding
problems,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 24-1, pp. 173–178, 2010.

[16] A. Felner, R. Stern, S. Shimony, E. Boyarski, M. Goldenberg,
G. Sharon, N. Sturtevant, G. Wagner, and P. Surynek, “Search-based
optimal solvers for the multi-agent pathfinding problem: Summary
and challenges,” in Proceedings of the International Symposium on
Combinatorial Search, vol. 8-1, pp. 29–37, 2017.

[17] M. R. Ryan, “Exploiting subgraph structure in multi-robot path
planning,” Journal of Artificial Intelligence Research, vol. 31, pp. 497–
542, 2008.

[18] P. Surynek, “Towards optimal cooperative path planning in hard setups
through satisfiability solving,” in Pacific Rim international conference
on artificial intelligence, pp. 564–576, Springer, 2012.

[19] P. Surynek, “Makespan optimal solving of cooperative path-
finding via reductions to propositional satisfiability,” arXiv preprint
arXiv:1610.05452, 2016.

[20] J. Yu and S. M. LaValle, “Planning optimal paths for multiple robots
on graphs,” in 2013 IEEE International Conference on Robotics and
Automation, pp. 3612–3617, IEEE, 2013.

[21] E. Erdem, D. Kisa, U. Oztok, and P. Schüller, “A general formal frame-
work for pathfinding problems with multiple agents,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 27-1, pp. 290–
296, 2013.

[22] P. Surynek, A. Felner, R. Stern, and E. Boyarski, “Efficient sat
approach to multi-agent path finding under the sum of costs objective,”
in Proceedings of the twenty-second european conference on artificial
intelligence, pp. 810–818, 2016.

[23] R. Barták, N.-F. Zhou, R. Stern, E. Boyarski, and P. Surynek, “Mod-
eling and solving the multi-agent pathfinding problem in picat,” in
2017 IEEE 29th International Conference on Tools with Artificial
Intelligence (ICTAI), pp. 959–966, IEEE, 2017.

[24] D. Kornhauser, G. Miller, and P. Spirakis, “Coordinating pebble mo-
tion on graphs, the diameter of permutation groups, and applications,”
in 25th Annual Symposium onFoundations of Computer Science, 1984.,
pp. 241–250, 1984.

[25] B. De Wilde, A. W. Ter Mors, and C. Witteveen, “Push and rotate:
a complete multi-agent pathfinding algorithm,” Journal of Artificial
Intelligence Research, vol. 51, pp. 443–492, 2014.

[26] P. Surynek, “A novel approach to path planning for multiple robots
in bi-connected graphs,” in 2009 IEEE International Conference on
Robotics and Automation, pp. 3613–3619, IEEE, 2009.

[27] R. C. Holte, M. B. Perez, R. M. Zimmer, and A. J. MacDonald,
“Hierarchical a*: Searching abstraction hierarchies efficiently,” in
AAAI/IAAI, Vol. 1, pp. 530–535, 1996.

[28] R. E. Korf, “Real-time heuristic search,” Artificial intelligence, vol. 42,
no. 2-3, pp. 189–211, 1990.

[29] O. Goldreich, Finding the shortest move-sequence in the graph-
generalized 15-puzzle is NP-hard. Springer, 2011.

[30] V. Kann, “Maximum bounded 3-dimensional matching is max snp-
complete,” Information Processing Letters, vol. 37, no. 1, pp. 27–35,
1991.

[31] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731,
pp. 34–37, 1966.

[32] E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,”
Operations research, vol. 14, no. 4, pp. 699–719, 1966.

	Introduction
	Related Work
	mapf and Classes of Algorithms
	Team Coordination on Graphs with Risky Edges (tcgre)

	Problem Formulation
	Action & Cost Model
	Problem Definition

	Mathematical Analysis
	NP-Hardness
	Problem Analysis

	Solutions
	jsg-Based Solutions
	jsg Construction
	Sub-Problem 1
	Sub-Problem 2

	Coordination-Based Solutions
	Receding-Horizon Sub-Team Solutions

	Results
	Large-Scale Method-Agnostic Experiments
	Focused Experiments
	ces's Insensitivity to Robot and Node Numbers
	rhoc-a*'s Sensitivity to Planning Horizon

	Conclusions and Discussions
	References

