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Abstract— This paper aims to solve the coordination of a
team of robots traversing a route in the presence of adversaries
with random positions. Our goal is to minimize the overall
cost of the team, which is determined by (i) the accumulated
risk when robots stay in adversary-impacted zones and (ii) the
mission completion time. During traversal, robots can reduce
their speed and act as a ‘guard’ (the slower, the better), which
will decrease the risks certain adversary incurs. This leads to
a trade-off between the robots’ guarding behaviors and their
travel speeds. The formulated problem is highly non-convex
and cannot be efficiently solved by existing algorithms. Our
approach includes a theoretical analysis of the robots’ behaviors
for the single-adversary case. As the scale of the problem
expands, solving the optimal solution using optimization ap-
proaches is challenging, therefore, we employ reinforcement
learning techniques by developing new encoding and policy-
generating methods. Simulations demonstrate that our learning
methods can efficiently produce team coordination behaviors.
We discuss the reasoning behind these behaviors and explain
why they reduce the overall team cost.

I. INTRODUCTION

Coordination of multi-robot systems has been studied
under various contexts [1], including cooperative path plan-
ning [2], resource sharing and task allocation [3], and ge-
ometric formation maintenance [4]. Complementary to the
challenges addressed in these works, this paper introduces a
new problem centered around generating coordinated team
behaviors to reduce risks caused by adversaries. Considering
a graph-based representation, team coordination problems
have been studied in [5]–[7]. In this work, as shown in
Fig. 1, we consider a route-based version of the problem,
fine-grinding the movements of robots in continuous space.
The environment features adversaries whose positions are
randomly initialized from a set. Robots accumulate ‘risks’
when traveling through adversary-controlled zones, and such
risks can be reduced by robots if they slow down and ‘guard’
a certain adversary. We define the team cost as a combination
of mission completion time and accumulated risk. Therefore,
minimizing this cost requires robots’ coordination, trading
off between their speed and the adoption of guarding behav-
iors. This adds a novel dimension of complexity and strategic
decision-making, which is unattended in conventional multi-
robot coordination tasks.

The described scenario has direct applications in many
domains. For instance, when multiple rescue robots need to
pass a fire-engulfed corridor [8], some robots might deploy
countermeasures as guard to quell flames, ensuring safer pas-
sage for their peers; On battlefields, when multiple vehicles
need to traverse enemy-controlled territories [9], suppressive
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Fig. 1: A team of robots traversing an environment with risk.
Adversary positions are randomly initialized from a set.

fire from allies can guard and mitigate threats posed by
the enemy. The formulated multi-robot coordination problem
is challenging due to the combinatorial nature of robots’
states, their hybrid actions (speed and guard), and multiple
constraints embedded through robot-adversary interactions.

To solve this problem, one feasible approach from the
optimization literature is Mixed Integer Programming (MIP).
However, since MIP for multi-robot coordination generally
provides an open-loop solution for the full trajectories of
all robots [10], it faces scalability challenges as the number
of robots increases, and requires repeated re-planning if the
adversary position or any environmental features change.
Motivated by these challenges, in this paper, we seek closed-
loop policies using a Reinforcement Learning (RL)-based
approach. The main contributions are as follows: (i) We
rigorously formulate a new multi-robot coordination problem
that incorporates guard behaviors among team members
to mitigate risks from adversaries. (ii) We investigate the
conversion of the problem into Markov Decision Processes
(MDPs) with hybrid move and guard actions. (iii) We in-
troduce a Hybrid Proximal Policy Optimization algorithm
tailored to our problem, featuring special treatment of reward
reshaping and a unique multi-weighted hot encoding for
representing robots’ states and adversary positions. (iv) We
perform extensive simulated experiments to validate the ef-
fectiveness of the proposed method and compare it with MIP
methods. We also elucidate the rationale behind observed
behaviors and their effectiveness in reducing the collective
team cost.

II. LITERATURE REVIEW

We review related work on MIP and RL for solving multi-
robot coordination problems.

A. Mixed Integer Programming

MIP has been applied to various multi-robot coordina-
tion problems, including task allocation [11], multi-robot
path planning [7], and environmental coverage and explo-
ration [12]. Solving MIP problems is NP-complete, making



traditional MIP solvers sensitive to the number of vari-
ables [13] and primarily applicable to small-scale problems.
However, for our problem of interest, the coordination of
robots occurs at every time step, depending on their cou-
pled actions and states. Such constraints and task spec-
ifications can be encoded through logic formulation and
piece-wise nonlinear functions [14]. Yet, considering the
entire trajectories of all robots as variables can quickly
render MINLP (Mixed Integral NonLinear Programming)
with coupled constraints intractable. To address this issue,
the advances in MIP such as interior point [15], branch
and bound [5], [16] methods, and heuristic approaches [17],
can drastically improve computation scalability by leveraging
convexity properties or the decomposability of the problem.
While these properties may not inherently exist for general
applications, one can introduce special cost function design
and relaxation [5] to promote convexity; or by simplifying
explicit collaboration between robots [17] to enhance prob-
lem decomposability.

In this paper, these techniques [5], [17] are not directly ap-
plicable since explicit coordination is critical to formulating
robots’ coordination and impact significantly on the optimal
behavior of the team1. On the other hand, given the hybrid
action spaces of the robots, even simple linear risk functions
can lead to highly non-smooth non-convex objectives and
constraints, which can make MINLP solvers numerically
unstable, or converge to sub-optimal solutions [18]. Finally,
our problem requires fast deployment and quick adaptation to
adversaries with random positions, which favors closed-loop
solutions over the open-loop solutions provided by MINLP.

B. Multi-Agent Reinforcement Learning

While optimization techniques suffer from computational
complexity, Reinforcement Learning (RL) methods enable
robots to employ trial and error to efficiently find empirical
solutions for complex problems. Moreover, the learned policy
is closed-loop and can adapt in real-time to new adver-
sary positions. For centralized problem solving, Deep Q-
Networks (DQN) [19], a value-based RL method suitable for
discrete actions, has been applied to learn team formations
in battle games [20]. For complex tasks with continuous
actions such as traffic optimization [21], Advantage Actor-
Critic (A2C) methods [22] can achieve faster convergence
and better exploration by utilizing a policy-based model
as an actor. Building on A2C, there are generalizations
such as Proximal Policy Optimization (PPO) [23] and Deep
Deterministic Policy Gradient (DDPG) [24] with improved
stability or data efficiency. For systems with hybrid action
space, there exist hybrid-PPO [25] methods that can output
discrete actions simultaneously with continuous actions. In
addition, considering the agent-based nature of our problem,
the mentioned algorithms also have multi-agent variants such
as Deep Coordination Graph [26], Multi-agent PPO [27], and
Multi-agent DDPG [28], allowing for decentralized execu-
tion, where each robot learns a local model and determines

1In simulated experiments, a naive baseline algorithm with simplified
robot coordination will be given to reflect this gap

actions according to local observation. The key advantage of
MARL is to improve algorithmic scalability. However, the
solution may be sub-optimal due to partial information.

In our setup, although we follow an idea similar to
existing centralized hybrid-PPO methods, we face challenges
in training efficiency. This has motivated us to apply special
treatment to the state encoding of robots and adversaries, as
well as reward reshaping, to address these issues.

III. PROBLEM FORMULATION

In this section, we will first formulate the task of the multi-
robot team, then introduce the notions of risk and guard.
Based on these, we quantify the team cost and describe our
problem of interest. Throughout the following definitions,
adversaries are considered to be heterogeneous while robots
are homogeneous.
Robots: Consider a number of n robots traversing a route
of length L. The position of the i-th robot along the route
at time t is represented by sti ∈ [0, L]. Let vti ∈ [0, vmax]
denote the speed of the i-th traveling robot at time t. Thus,
the position update for each traveling robot is given as

st+1
i = sti + vti∆t. (1)

where ∆t is the time interval. Before robot i arrives at
the destination, each time step will produce a time penalty,
denoted by P t

i . We define

P t
i =

{
p if sti < L,

0 if sti = L.
(2)

Adversaries and Risk: Let m denote the number of adver-
saries. The position of adversary j is represented as

zj ∈ Dj ⊂ (0, L), (3)

which is randomly chosen from a set Dj for each trial of
experiment. Around zj is the impact zone of the adversary,
denoted by Mj . If a robot is in this region, i.e., sti ∈ Mj ,
a cost rti,j will be incurred,

rti,j =

{
fj(s

t
i, zj) ≥ 0 if sti ∈ Mj ,

0 if sti /∈ Mj ,
(4)

which depends on the relative positions of sti and ztj .
Guard: During traversal, if stk ∈ Mj , robot k ∈ {1, · · · , n}
can reduce its speed and counteract adversary j as a ‘guard’.
Specifically, let gtk ∈ {1, 2, · · · ,m} denote the index of the
adversary that robot k is guarding against at time t. Then,
the risks that adversary j incurs to robots i, ∀sti ∈ Mj are
discounted to αt

k,jr
t
i,j , where

αt
k,j =

1− β
|vmax − vtk|

vmax
if gtk = j,

1 otherwise,
(5)

is the discount factor with β ∈ (0, 1). When vtk = 0, robot
k achieves best guarding performance αt

k,j = 1 − β, while
as vtk → vmax, the guarding effect vanishes. Furthermore,
we assume the guarding effects stack with each other, thus,



considering all robots in the system guarding an adversary
j, the risk it incurs to robot i is discounted by all guards as∏n

k=1 α
t
k,jr

t
i,j .

Team Cost: Let T be the total time for all robots in the team
to traverse the route. Based on the above definitions, the team
cost considers the risks and time penalties accumulated by
all robots,

J =

n∑
i=1

(Ri + Pi), (6)

where Ri =
∑T

t=1 R
t
i∆t and Pi =

∑T
t=1 P

t
i∆t, with

Rt
i =

m∑
j=1

n∏
k=1

αt
k,jr

t
i,j . (7)

taking into account the guarding effect.
Problem of Interest: In each time step, robot i’s action is
composed of traveling speed vti and guard target gti . Assume
the robots can observe adversaries’ positions zj but do not
know Dj . To strategically design all robots’ behaviors, let
vt = {vt1, . . . , vtn}, and gt = {gt1, . . . , gtn}. The problem is
to minimize the team cost, i.e., t ∈ {1, · · · , T}

min
{vt,gt}

J . (8)

Note that the moving and guarding behaviors of robots
lead to team coordination, as one robot can decrease its speed
to benefit all traveling robots within the influence region of
the guarded adversary.

IV. METHOD

In this section, we present methods for solving the formu-
lated problem. We perform a simple analysis for the case of
single-robot single-adversary. For more complicated cases,
we introduce proximal policy optimization (PPO) based RL
algorithms with a special multi-weighted hot state encoding
mechanism and reward reshaping to improve training effi-
ciency.

A. An observation for the single adversary case

We start by considering a single robot and a single
adversary case that makes the robot’s behavior analyzable.
Although this analysis does not yield directly applicable
robot coordination strategies, its conclusions align with sev-
eral real-world observations and can offer insights into the
multiple robots and adversaries cases.

Given that the robot’s velocity affects its guarding perfor-
mance αt

i,j as shown in (5), the single robot faces a trade-off:
slowing down to incur a discount factor αt

i,j to the risk it
takes or speeding up to decrease the time it stays in the
adversary controlled area.

Proposition 1. Suppose there’s only one robot and one
adversity. Consider the guard discount defined in (5). If
∆t → 0, the cost J is minimized if the robot always
maintains maximum speed, i.e., ∀t, v = vmax.

Proof. For ease of performing analysis, given ∆t → 0, we
convert the risk accumulation to a continuous form, which
reads2

R =

∫ T

0

(1− β +
βv

vmax
)f(s, z)dt

=

∫ L

0

(1− β + β
v

vmax
)f(s, z)

ds

v

=

∫ L

0

(
1− β

v
+

β

vmax
)f(s, z)ds (9)

where v > 0 and
∫ T

0
s dt = L. In the second line of the

equation, we substitute the integration variable using the
property ds

dt = v. From (9), it’s clear that R is minimized if
∀t, v = vmax. Furthermore, given the definition of P as the
time penalty, it is also minimized by maintaining v = vmax.
This completes the proof.

Proposition 1 only analyzes a single-robot single-
adversary case. However, in the multi-robot case, if there
exist spots sti ∈ Mj such that fj(s

t
i, z

t
j) = 0, indicating

that some robots can guard moving robots with 0 risk, then
they should stop to guard, and the moving robots should
adopt the strategy of Proposition 1 to reduce

∑n
i=1 Ri. This

leads to a ‘bang-bang behavior’ [29], where the robot either
remains in a ‘safe spot’ to guard others or moves at full
speed when under the protection of other robots. This moving
pattern, known as ‘bounding overwatch’, is well-justified
in the military domain. However, this strategy also incurs
significant time costs in terms of

∑n
i=1 Pi, as it necessitates

some robots to fully stop when guarding others.
When the number of robots grows large and the time

penalty
∑n

i=1 Pi begins to dominate the overall cost, the
strategy might change into two possible variations: (i) the
robots take special scheduling to stop or move, and when
moving, they move at full speed; (ii) several robots move at
intermediate speeds to perform move and guard simultane-
ously. Both strategies are observed later in our simulations
section, depending on the environment setup. Nevertheless,
these behaviors consider the movements of multiple robots
in a coupled manner, which makes theoretical analysis in-
tractable. In addition, as will be discussed in the simulation,
due to the piece-wise and condition-dependent non-linear
cost structure and coupled constraints, the MINLP formu-
lation of the problem is very difficult to solve. Motivated
by these, we seek to use reinforcement learning to solve the
problem with a closed-loop solution.

B. MDP Formulation and RL methods

The Markov Decision Process (MDP) formulation of our
problem is defined by the tuple (S,A, T , γ, R), including
state, action, state transition, discount factor, and reward.
Here, we propose a centralized MDP to address the multi-
robot coordination problem formulated in Sec. III. Specifi-
cally, let st = {st1, . . . , stn, z1, . . . , zm} ∈ S be the state set

2The subscripts i, j are omitted since only considering one robot and
one adversary. For continuous representation, the notation for time t is also
omitted.



at time t, where sti, zj ∈ [0, L] are associated with robots
positions and adversaries positions, respectively. Since ad-
versaries may appear at random positions, their information
needs to be encoded into the system state so that the learned
policy can generate different strategies corresponding to the
adversary positions. Following this, the state space is defined
as:

S := [0, L]n × [0, L]m.

For the actions of robots, we have ati = (vti , g
t
i), which is a

hybrid combination of continuous speed vti ∈ [−vmax, vmax]
and discrete guard behavior gti ∈ {1, 2, . . . ,m}. The action
space for all robots is

A := ([−vmax, vmax]× {1, 2, . . . ,m})n . (10)

Based on S and A, the state transition is T : S × A →
S. The robot states follow motion dynamics (1), which is
deterministic, and the adversary positions are static and do
not depend on A. The R(st,at) is the immediate reward of
action at ∈ A with state st ∈ S, defined as the negative
team cost

R(st,at) := −
n∑

i=1

(Rt
i + P t

i ). (11)

We complete our MDP formulation by choosing a dis-
counter factor γ = 0.995. The goal of RL is to learn a policy
π : S → A to maximize the expected cumulative reward for
the whole team over the task horizon T , i.e.,

max
π

E
at∼π(·|st)

[
T∑

t=0

(γ)tRt

]
. (12)

Multi-weighted hot state encoding. To employ RL methods
to solve our MDP problem, we can directly feed a scalar
representation of each robot’s and adversary’s state (position)
to the model. However, we observe that the dimension of
our state space is much smaller than that of the action space
due to the joint speed and guard behaviors. This discrepancy
hinders the neural network’s reasoning capabilities, which
cannot efficiently learn parameters [30]. Inspired by the one-
hot encoding, we seek to expand the state space using a
similar mechanism. However, one-hot encoding is typically
suited for discrete variables, whereas our state space is
continuous. To address this, for robot positions, we introduce
a new weighted hot encoding mechanism, which represents
a continuous variable as the weighted average of two neigh-
boring one-hot vectors. Specifically, let h(s) ∈ [0, 1]L+1

denote the weighted hot encoding for a state s ∈ [0, L], and
s = sint+sdec, which has both integer and decimal parts. Let
h(s)[k], k ∈ Z denote the kth element of vector h(s). Then
h(s) is a vector with two nonzero entries:{

h(s)[sint + 1] = 1− sdec

h(s)[sint + 2] = sdec
(13)

As a simple example, if L = 4 and s = 3.2. Since 3.2 =
0.8 × 3 + 0.2 × 4, one has, h(s) = [0 0 0 0.8 0.2]⊤. If
s = 0.7 = 0×0.3+1×0.7, one has h(s) = [0.3 0.7 0 0 0].

Multi-weighted-hot encoder

Reward 
Reshaping

Speed 
(continuous)

Guard
(discrete)

Actions

Critic Network

Hybrid Actor Network

Ad
v.

Environment

States

Robots

Adversaries

+

+

Fig. 2: RL Implementation: H-PPO with multi-weighted hot
encoding and reward reshaping

Since we consider a centralized MDP, we vector stack each
robot’s encoding and adversaries encoding through h(·) to
obtain a Multi-weighted hot state encoding as follows:

s̃t = vec{h(st1), · · · , h(stn), h(z1), · · · , h(zm)},

which has a dimension of [0, 1](n+1)(L+1). Ths allows us to
individually encode robots’ positions and adversary positions
in a way that is easily understood by the neural network.
It is worth remarking that one-hot encoding is typically
used for categorical variables. In our problem, the positions
of robots, whether inside or outside of adversary-impacted
zones, correspond to completely different properties and
different feasible guard actions. This distinction favors one-
hot encoding, as all input entries are orthogonal to each
other. This fact further justifies why multi-weighted hot state
encoding can enhance our learning efficiency.

Reward reshaping. Since our task requires all robots to
move to the terminal position, it is common to introduce
a one-time constant reward Q(st) = q, if sti = L,∀i;
Q(st) = 0, otherwise. However, this terminal reward is so
sparse that it provides limited guidance to robots for state-
space exploration and policy updates. Due to the greedy
nature of the action section process, robots are reluctant to
enter adversary zones. To address this, we further introduce
a reshaping reward

F (st, st+1) = c

n∑
i=1

(
γst+1

i − sti
)
, (14)

which incites robots to move forward and speeds up the
learning process [31]. The final reshaped reward reads

R̃(st,at) = R(st,at) +Q(st) + F (st, st+1) (15)

where st+1 is determined by st,at through T . We note that
the reshaped reward does not change the optimal solution
compared to the original formulation. This is guaranteed by
[32], as both Q(st) and F (st, st+1) can be rewritten into a
potential-based function: γΦ(st+1)−Φ(st), where Φ(·) is a
real-valued function of state and γ is the discount factor.



RL Implementation. Combining the formulated MPD with
multi-weighted hot state encoding and reward reshaping,
we use two proximal policy optimization (PPO) based RL
algorithms to solve the multi-robot path traveling problem.
The key difference lies in the way we handle the hybrid
action space. First, for simplicity, we consider pure discrete
action space, assuming robots only take integral speeds. This
has led to a standard PPO with discrete actions (D-PPO) [33],
and the proposed multi-weighted hot state encoding degrades
to multi-one hot encoding. Second, we consider PPO with
hybrid action space (H-PPO), and let the actor-network
simultaneously output continuous speed actions and discrete
guard actions. The policy losses (log probabilities) of the
two actions are combined and used for training the network
parameters. A conceptual diagram of the RL implementation
is shown in Fig. 2, with a centralized structure to handle all
robots’ rewards and actions. Leaving as our future work, a
possible decentralized implementation of the RL paradigm is
to let each robot possess a local model of Fig. 2. Then, lever-
aging our multi-weighted-hot encoder, if the robot cannot
observe certain robot’s states, the corresponding weighted-
hot vector has all entries being zero.

V. SIMULATED EXPERIMENTS

In this section, we present simulated experiment results to
validate the analytical statements in Sec. IV-A and the RL
implementation for team coordination behaviors in Sec. IV-
B. For complex cases, we discuss the reasoning behind these
behaviors and why they reduce team costs. We also provide
comparisons with baselines and numerical methods based
on MINLP using Surrogate optimization [34] and BONMIN
Solver [35].

A. Simulation environment

We consider three different environments shown in Fig. 3,
including 1-3 adversaries with potential overlaps over their
impact zones. The route in Fig. 1 is abstracted as a linear
distance from the starting point to the target. In M1, the
adversary’s position zj is randomly chosen from a discrete
integer set Dj , with width 10 centered at the middle of
the environment; In M2, the two adversary’s positions are
chosen from two discrete sets Dj , each has a width 5; the
risk zones may overlap with each other. For both M1 and M2,
when risk functions fj(sti, z

t
j) are homogeneous and depends

linearly on the distance between the robot and an adversary

M1

M2

M3

[                 ]

[                 ] [                 ]

Fig. 3: Experiment environments with different adversary
configurations. The height represents the unit risk each
adversary generates at different locations.

(visualized by the height of the shades in the figure). In
M3, we consider stationary adversary positions, but the risk
functions are heterogeneous and nonlinear, and with more
complex overlaps.

We choose the following environment parameters: time
interval ∆t = 1, max robot speed vmax = 3, risk co-
efficient η = 1, time penalty p = 1, guard discount
coefficient β = 0.6. All rewards, before being sent to D-
PPO, H-PPO models, are re-scaled for normalization pur-
poses. For each environment (M1, M2, M3), the learning
model is individually trained. Within each environment, since
adversary positions are part of the state space, a single
model is trained with all possible adversary positions. During
execution, this single model can adapt to adversary positions
that are randomly generated for each test. This reflects the
generalization capability of our model.

B. Team coordination and model generalization with homo-
geneous adversaries.

The results in Fig. 4a-c consider the M1 scenario with
two and three robots, respectively. The D-PPO and H-PPO
methods generate almost the same results except for slight
differences in velocity when robots leave or approach the
boundaries of adversary-impacted zones, which leads to
minor changes to the final reward. For conciseness, we only
visualize the results from D-PPO. In Fig. 4a, the behaviors
of the two robots follow a ‘bounding overwatch’ pattern
described in Sec. IV-A, i.e., one robot guards at the boundary
of the adversary-impacted zone with minimal risk until the
other robot moves across the zone at full speed. Then, the two
robots switch roles to cooperatively accomplish the task with
minimum cost. In Fig. 4b, as the number of robots increases,
we observe (from the vertical dashes) a change in robots’
coordination such that the guarding robots start moving 2
seconds before the traveling robots arrive at the other end.
This adjustment is due to the increase in the number of
robots; the time penalty encourages the robots to arrive at
the destination more quickly. In Fig. 4c, we change the
adversary’s position in the middle of the execution. Although
our algorithm is not designed to account for the dynamic
behaviors of adversaries, the closed-loop nature of the policy
and the fact that all possible adversary positions have been
learned during the training process allow robots to quickly
make adaptations. At the behavior level, robots maintain
their position at the boundary of the zone when guarding.
This demonstrates the model’s generalization capability. If
using optimization-based approaches, such as mixed-integer
programming, then replanning is necessary.

We employ D-PPO and H-PPO methods to solve optimal
coordination under the M2 environment. Since the positions
of the two adversaries are randomly initialized, it is possible
that the two adversary-impacted zones may or may not over-
lap with each other, which will then impact the coordination
patterns of the robots. Here, we choose two representative
cases: without overlap and with overlap. In Fig.4d, without
overlap, the three robots simply reproduce coordination be-
haviors in Fig. 4b over the two zones, respectively. In the case



(b) Coordination of three agents in M1(a) Coordination of two agents in M1

(e) Coordination of three agents in M2b

Zoom-in

(g) Zoom-in on overlapping zone with H-PPO

Team Reward = - 3.58 

Boundary

(f) Zoom-in on overlapping zone with D-PPO

Team Reward = - 3.94 

Boundary

(d) Coordination of three agents in M2a

Adversary Position

(c) Coordination of two agents in dynamic M1

Fig. 4: Using D-PPO and H-PPO to solve team coordination problem with first two environments in Fig. 3. The x-axis represents time
and the y-axis represents the length the robot traveled in the environment. The slope represents the robot’s speed. The color dots on the
trajectories represent the adversary the robot is currently guarding against. In (c) the purple dash represents the current adversary position.
The shades are the adversary-impacted zones with darker colors in the middle to represent higher risk, corresponding to Fig. 3.

of Fig.4e, where two adversaries have an overlapped area
(c.f. M2 in Fig. 3), the results of D-PPO and H-PPO show
relatively consistent strategies for the [10, 30] and [40, 60]
zones, as shown in Fig. 4e, but exhibit variant behaviors in
the overlapping zone [30, 40]. To investigate this, we zoom
into the overlapping zone and observe the difference between
H-PPO and D-PPO results shown in Fig. 4f-g. Note that
robots start at {30, 31, 30} instead of {30, 30, 30} because
when entering the zone, robot 2 moves with vmax = 3 from
s2 = 28 and directly arrives at s = 31. For a similar reason,
the terminal states are {41, 40, 40}. In both Fig. 4f and g,
at least one robot takes intermediate speeds that perform
move and guard behaviors simultaneously. This aligns with
the hypothesis-(ii) at the end of Sec. IV-A. When robots
are close to the boundaries of the overlapping zone, their
risks are dominated by red and blue adversaries, respectively.
As observed in plots, the stationary robot always guards
the adversary which causes more risk, while the robot with
intermediate speed will guard the other adversary. Moreover,
a comparison of the results reveals that H-PPO, with its
ability to handle continuous speeds, can refine strategies
more effectively, resulting in better rewards. The asymmetry
in robot’s behavior may be due to time discretization, where
the cost is computed at the end of each time step.

C. Validation of Reward Reshaping and Weighted-hot State
Encoding

Using the same environment setup as in M1 and M2, we
validate the effectiveness of the proposed reward reshaping
and weighted-hot state encoding techniques, and compare
them with the results when these techniques are not used.

1) Necessity of Reward Reshaping: Using environment
M1, the effectiveness of reward reshaping is demonstrated in
Fig. 5 (a). It is observed that without reward reshaping, the
reward curve in the PPO training shows a trend of downward

(a) Validation of Reward Reshaping. (b) Validation of Weighted-hot Encoding.

Reward Loss

Timestep (x1k) Timestep (x1k)

0
10
20
30
40
50 

Fig. 5: Validations of Reward Reshaping and Weighted-hot
State Encoding Techniques.

convergence. When executing the learned policy in the gym
environment, it was noticed that all robots halted before
entering the adversary zone. We believe this is due to the
original problem formulation, where entering the adversary
zone triggers significant costs immediately, causing unfavor-
able exploration because robots tend to avoid such heavily
penalized actions. Furthermore, since the environment has a
maximum simulation times step of 1003, robots will simply
wait until the simulation stops and learn a bad behavior with
poor rewards. On the other hand, with reward reshaping ap-
plied, the training could stably converge toward the optimal
solution’s reward values. As we execute the learned policy
in the gym environment, robots can generate meaningful
coordination behaviors. This verifies the effectiveness of our
reward reshaping as discussed in Sec. IV-B.

2) Effectiveness of Weighted-hot State Encoding.: We
use the M2 environment to verify the effectiveness of our

3We note that in the ideal case, 100 steps are more than enough for all
robots to reach the destination.



Fig. 6: Coordination of three robots in M3 using H-PPO.
The figure is read the same way as Fig. 4.

weighted-hot state encoding mechanism. From Fig. 5 (b),
the training loss curve indicates that directly using the scalar
values of robots’ and adversaries’ positions as neural network
inputs, i.e., without weighted-hot encoding results in contin-
uous oscillations in the PPO training process. This implies
that the neural network faces difficulties in understanding
the state description. Instead, when weighted-hot encoding is
used and all other model parameters (latent layers, learning
rate, exploration rate) are kept the same, the training stability
is significantly improved and the loss converges to zero
quickly. This verifies the effectiveness and necessity of our
weighted-hot state encoding mechanism.

D. Behavior analysis of team coordination in complex envi-
ronments with heterogeneous adversaries.

For the case of three adversaries with multiple overlaps
and heterogeneous nonlinear risk functions (M3), we deploy
three robots and obtain coordination results as shown in
Fig. 6. Here, the adversaries are stationary. We added colored
dashes to better visualize the boundaries of red and blue
adversaries. The environment’s complexity makes it difficult
to judge the optimality of the obtained coordination. In the
following, we only discuss the reasoning behind the obtained
result and explain why it reduces the overall team cost.
First, according to Fig. 3, the M3 environment adds M2
with an extra green adversary. This green adversary generates
an unsymmetric and nonlinear risk zone, which poses little
risk early in the path but grows large as robots proceed.
Consequently, in Fig. 6, robots first follow a pattern very
similar to that of Fig. 4e. However, midway through the
path, as risks associated with the green adversary become
large, the predecessor robot 1 does not fully stop to guard
others. Instead, it takes an intermediate speed to guard the
red adversary. This lasts until robot 1 meets robot 2 and both
leave the boundary of the red adversary. On the other hand,
we observe robot 3 stops in the middle of the path to perform
guard. This happens because, at the moment, the other two
robots are suffering huge risks from both blue and green
adversaries. By stopping and thereby increasing its own risk,
robot 3 contributes to the cost-saving of the whole team.

Loss Reward Loss Reward

(a) M2 environment with overlapping 
zone using H-PPO and D-PPO.

(b) M3 environment using H-PPO.
Timestep (x1k) Timestep (x1k)

Fig. 7: Convergence results for training loss and rewards.

Finally, when robot 1 and 2 both arrives at the boundary,
they help robot 3 by guarding red and blue adversaries,
respectively. We note that the coordination presented in
Fig. 6 may not be the global optimal, and its optimality
gap is difficult to quantify. However, as discussed above, the
observed robot coordination does exhibit rational behaviors,
with the goal of reducing the overall team cost.

E. Reward Comparison with Baseline and MINLP Solvers

To visualize the training process, in Fig. 7, we use M2 and
M3 environments as representative results to show training
losses and rewards. We observe that H-PPO performs better
than D-PPO and we note that D-PPO struggles to converge
for the M3 environment.

For comparison purposes, we introduce a naive base-
line strategy where all robots’ actions are decoupled, and
each robot individually uses greedy choices for move and
guard. Additionally, we write the MINLP formulation of
the problem and solve it using the BONMIN Solver [35]
in Python and the Surrogate algorithm in MATLAB. We
note that the piece-wise and condition-dependent non-linear
functions (2)-(5) require large numbers of auxiliary variables
to formulate, which leads to low computational efficiency.
When run indefinitely, BONMIN takes hours trying to close
the optimality gap. Therefore, we stop BONMIN in 10
minutes if it does not converge and record the result. For all
environments in Fig. 3, a fixed set of adversary positions is
chosen, and three robots are deployed to test all approaches.
Specifically for M2, there is an overlap between the two
adversaries. As shown in Table I, the developed H-PPO
generally outperforms or provides comparable performance
to other methods. The Surrogate does not exhibit meaningful
convergence on rewards for the two complex cases. As a final
remark, while BONMIN is stopped after 10 minutes, H-PPO
obviously requires significantly more training time. However,

TABLE I: Comparison with Baseline and MINLP Solvers

Env D-PPO H-PPO Baseline BONMIN Surrogate

M1 −5.80± 0.2 −5.78± 0.0 −9.94 −5.78 −6.11

M2 −8.63± 0.7 −8.22± 0.4 −20.18 −8.03 N/A

M3 −40.13± 8.5 −26.87± 2.0 −44.70 −30.32 N/A



H-PPO can be trained offline and provides a general closed-
loop policy for all possible adversary positions. In contrast,
for BONMIN, each adversary position needs to be solved
individually for an open-loop solution. Thus, for real-time
applications, the proposed H-PPO is more desirable.

VI. CONCLUSION AND FUTURE WORK

We have formulated a coordination problem considering
a team of robots traversing a route with adversaries. The
cost of the team was determined by the time penalty and the
risk robots accumulated when crossing adversary-impacted
zones, which can be reduced by robots’ guard behavior when
moving at a lower speed. We analyzed the optimal coordina-
tion strategy for a single adversary scenario. For complex
environments, we proposed and implemented an H-PPO
method with reward reshaping and a new multi-weighted
hot state encoding mechanism. Simulated experiments are
performed under different environments and compared with
alternative approaches to validate our analysis and the ef-
fectiveness of the H-PPO method. Based on the simulation
results, we discussed the reasoning behind these behaviors
in terms of reducing the overall team cost. Future work will
consider developing a decentralized learning paradigm to
achieve scalable coordination with a larger number of robots
and more complicated environments. We also seek to expand
the proposed formulation to non-route-based environments
considering the geometries of risk zones and terrain, and the
decentralization of the proposed algorithm.
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