GEORGE ASON

INTRODUCTION

Human-robot teams traversing an environment with risks can provide support for each other from specific nodes.

We want to know:

- When such support/coordination is beneficial?
- How to best coordinate the actions as a team to minimize the overall cost?

PROBLEM FORMULATION

Formulate it as a minimum-cost graph traversal problem:

- Base graph $\mathbb{G} = (\mathcal{V}, \mathcal{E})$.
- Environment graph incorporates a notion of risk and support.
- Each edge $e_{i,i} \in \mathcal{E}$ is associated with a set of support nodes $Z_{i,i} \subseteq \mathcal{V}$.

• Action set for agent *n* at node *i* is
$$\mathcal{A}_i^n = \left\{ \{a_{i,j}\}_{j \in \mathcal{N}_i}, a_s \right\}.$$

• The different costs for agent A is: $c_{A}^{t}(p^{t}, a^{t}) =$ $(c_{i,j}, \text{ if } a_A = a_{i,j} \text{ and } p_B \notin Z_{i,j} \text{ or } a_B \neq a_s,)$

 $\tilde{c}_{i,j}$, if $a_A = a_{i,j}$, $p_B \in Z_{i,j}$, and $a_B = a_S$,

$$c, \quad \text{if } a_A = a_S,$$

0, if
$$a_A \neq a_s$$
 and if $a_A \neq a_{i,j}$.

- Compute costs of each action in a sequence to obtain overall cost.
- Goal is to find a pair of sequences (one for each agent) that minimizes overall costs.

Team Coordination on Graphs with State-Dependent Edge Costs

Manshi Limbu, Zechen Hu, Sara Oughourli, Xuan Wang, Xuesu Xiao, and Daigo Shishika George Mason University

We provide a problem formulation and two methods for solving multi-agent cooperation on a graph with a notion of *risk* and support.

Environment graph with *risk* edges and *support* nodes

One agent provides *support* by holding up the *ladder* while the other agent climbs.

Experimentally, we find that CJSG is more efficient overall than JSG in generating optimal path planning solutions.

METHODS Joint State Graph (JSG):

- Nodes represent the joint states.
- Edges represent possible transitions between those joint states.

• Cost of each edge is the sum of costs for each agent's actions. The point is that JSG *subsumes* the action selection of the original problem, converting it into a single-agent path planning problem on JSG that can be solved with any standard shortest-path algorithm. However, it can be computationally expensive with greater graph sizes.

Joint State Graph for a 5node environment graph. Red (green) edges represent traversing risk edge without (with) support.

Critical Joint State Graph (CJSG):

To address JSG's computational inefficiency, we propose to classify the agents' movements into coupled and decoupled modes:

- Coupled movements are planned in JSG, where supporting behavior is possible.
- Decoupled movements are independently planned by each agent on base graph.

Support Graph Critical Joint States (1,1) (1,2) (1,3)(1,4) (1,5)≯(2,4) ≯(3,4) (1,1)(5.4) (5.5)

Fully connected graph where nodes represent critical joint states where agents initiate/complete support and the start/goal nodes.

RESULTS

CJSG	
GC	SP
0.01 ± 0.00 0.09 ± 0.02 0.18 ± 0.01	0.02 ± 0.02 0.13 ± 0.02 0.15 ± 0.05
0.65 ± 0.09 1.77 ± 0.05 3.64 ± 0.59	0.43 ± 0.07 0.80 ± 0.01 1.25 ± 0.12
6.11±0.55 3.82±0.73 26.82±1.49	2.80 ± 0.18 4.60 ± 0.22 6.91 ± 0.27