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Abstract— This paper studies Reinforcement Learning (RL)
techniques to enable team coordination behaviors in graph
environments with support actions among teammates to reduce
the costs of traversing certain risky edges in a centralized
manner. While classical approaches can solve this non-standard
multi-agent path planning problem by converting the original
Environment Graph (EG) into a Joint State Graph (JSG) to
implicitly incorporate the support actions, those methods do not
scale well to large graphs and teams. To address this curse of
dimensionality, we propose to use RL to enable agents to learn
such graph traversal and teammate supporting behaviors in
a data-driven manner. Specifically, through a new formulation
of the team coordination on graphs with risky edges problem
into Markov Decision Processes (MDPs) with a novel state
and action space, we investigate how RL can solve it in two
paradigms: First, we use RL for a team of agents to learn how
to coordinate and reach the goal with minimal cost on a single
EG. We show that RL efficiently solves problems with up to 20/4
or 25/3 nodes/agents, using a fraction of the time needed for
JSG to solve such complex problems; Second, we learn a general
RL policy for any N -node EGs to produce efficient supporting
behaviors. We present extensive experiments and compare our
RL approaches against their classical counterparts.

I. INTRODUCTION

Multi-robot systems have been studied with the premise
of increased efficacy using many low-capability robots as
opposed to a small number of high-capability robots. In such
a setting, the coordination between low-capability teammates
is essential to achieve the whole team’s high efficacy. This
paper is interested in a scenario where a team of robots coop-
eratively traverse a challenging environment by “supporting”
each other. Support can take the form of, for example,
providing a different vantage point for better situational
awareness, or physically interacting with the environment to
reduce risk (e.g., holding a ladder). We abstract these notions
to the actions that can be taken on a graph environment
to study how multi-robot teams can efficiently traverse an
environment when such cooperation is possible.

Team coordination on graphs with state-dependent edge
cost [1] is a recently proposed problem, in which a team
of agents move on an Environment Graph (EG) and provide
support actions for teammates to reduce the cost to traverse
certain risky edges with the goal of achieving minimal
traversal cost for the whole team to reach the goal(s). Prior
methods convert the EG with risky edges (whose traversal
cost depends on whether a teammate is supporting the
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Fig. 1: Team coordination with reinforcement learning on a
single graph (a) and on multiple graphs (b) with risky edges
and supporting behaviors to reduce risk.

traversal from a certain support node) into a Joint State Graph
(JSG) which implicitly incorporates the support actions and
then applies graph-search algorithms to find the minimal cost
path on the JSG. However, JSG does not scale well to larger
graphs and team sizes, while its extended version Critical
Joint State Graph (CJSG) can only efficiently handle two
agents on graphs where the ratio between risky edge and
normal edge is low.

Reinforcement Learning (RL) has the potential to allow
agents to learn from trial-and-error experiences by exploring
on the graph. It has the potential to generate coordination
behaviors on the EG without constructing JSG or CJSG and
searching on those large-scale, densely connected graphs.
In this paper, we investigate how the original centralized
problem of team coordination on graphs with risky edges
can be converted into Markov Decision Processes (MDPs)
with graph-dependent state and action spaces and then be
solved by state-of-the-art RL techniques. To be specific, we
are interested in using RL to solve the team coordination
problem in two paradigms. In the first paradigm (Fig. 1 (a)),
RL is used to solve the team coordination on one single
EG with more than two agents. Our experiment results show
that the total time including training and inference of the
RL policy can be faster than the time used by the JSG
approach, including JSG construction and search time, in
complex problems with many agents and nodes. RL can also
extend to more than two agents, which CJSG cannot solve;
In the second paradigm (Fig. 1 (b)), we use RL to solve any
N -node graph with a novel formulation of the agent state,
graph connectivity, and supporting mechanism encoded in
the state space. Our experiment results show that a general
RL policy can be learned for any graph and support structure
up to ten nodes to produce efficient supporting behaviors. To
be best of our knowledge, this work is the first to utilize RL
to solve a multi-robot coordination problem on graphs.



II. RELATED WORK

We review related work on multi-agent systems and multi-
agent reinforcement learning techniques.

A. Multi-Agent Systems

Multi-agent systems have received tremendous attention
from different fields, ranging from robotics to sensor net-
work [2], to execute a variety of tasks, e.g., environment
sampling [3], search and rescue [4]–[6], and surveillance [7].
While enjoying the benefits of accomplishing a complex
task with a team of agents, challenges arise correspondingly.
For example, task allocation [8], consensus and formation
control [9], [10], collision-avoidance [11], [12], and com-
munication and synchronization [13] are problems that do
not exist in single-agent scenarios.

Researchers have studied varying levels of “teaming”.
Earlier works have focused more on the scalability but with
less concern on the inter-agent dependency leading to a
simple “divide and conquer” approach [7], [14]. Some more
recent works have considered how heterogeneity improves
the team performance, including robot teams with heteroge-
neous capabilities and/or heterogeneous policies (i.e., spe-
cialized roles) that arise in teaming behavior [15]. In this
paper, we are interested in considering a scenario where
the team members may dynamically take different roles to
cooperatively perform a task, i.e., through coordination.

B. Multi-Agent Reinforcement Learning

Multi-Agent Reinforcement Learning (MARL) [16] is an
extension of traditional RL that addresses settings with multi-
ple agents that operate either cooperatively, competitively, or
coexist in mixed settings. MARL algorithms can generally be
categorized based on their learning paradigms—centralized,
decentralized, and hybrid approaches [16]. In centralized
learning, the training process has access to the full states
and actions of all agents, enabling a comprehensive learning
framework. In contrast, decentralized learning limits each
agent to its local observations, making it more suitable
for scenarios where global state information is either not
available or not practical to use. Based on the approach
to solve the learning problem, MARL is also categorized
into value-based methods like QMIX [17] and VDN [18],
and policy-based methods such as MAPPO [19], MAD-
DPG [20], and MAA2C [21]. Many of these techniques are
extended and adapted from single-agent RL algorithms like
Q-Learning [22] and PPO [23], and some integrate both value
and policy-based strategies like Actor-Critic methods.

In terms of using MARL to facilitate agent coordination,
approaches like DICG [24] and DCG [25] use graphs as a
tool to represent the interaction topology between agents, but
not as the environment iteself. In these settings, each node in
the graph represents an agent and edges represent commu-
nication or influence pathways between them. Agents learn
to coordinate their actions either through explicit message-
passing along the graph structures (in the case of DCG)
or through implicit coordination that leverages the graph
topology (as in DICG).

In cases where the environment can be efficiently repre-
sented as a graph [1], these conventional MARL methods
lack specialized mechanisms to exploit the graph topology
or the node-edge relationships. This research gap is what
this work aims to fill. In a centralized manner, we convert
the original problem of team coordination on graphs into the
form of an MDP to present not only agent states, but also the
states of the environment around the agents. We show RL has
the potential to solve these problems more efficiently when
more agents and larger graphs are of interest, comparing to
state-of-the-art classical methods.

III. PROBLEM FORMULATION

We first present our original problem formulation of team
coordination on graphs with state-dependent edge costs [1],
which, in this work, is converted into a novel MDP for-
mulation with a new state and action space, along with a
state transition function. We also design a reward function
based on the traversal cost to enable reinforcement learning
to efficiently solve this problem in two different settings:
learning to solve for a single graph and learning to solve for
multiple graphs with the same number of nodes.

A. Team Coordination on Graphs

A team of N agents travel on a strongly connected
Environment Graph (EG) denoted by G = (V,E), where V
is a set of nodes, and E is a set of edges, E ⊂ V×V, from
a start node set V0 ⊂ V to reach a goal node set Vg ⊂ V
while minimizing the cost of traversal. The nominal cost for
traversing the edge ei,j ∈ E is given as a constant, ci,j for
i, j ∈ V, when traveling on that edge without support. On the
EG, each edge ei,j is associated with a set of support nodes,
Zi,j ⊆ V. If this set is non-empty, an agent at v ∈ Zi,j

can provide support for the agent traversing ei,j and reduce
the nominal traversal cost ci,j to c̃i,j . The action set for any
agent at node i is given as Ai = {{ai,j}j∈Ni

, as}, where Ni

is the neighborhood of i, and ai,j is the action to move to
node j given that j ∈ Ni. The action as is the support while
inducing an extra support cost c̃.

For agent n ∈ N, denote its action sequence and node
visiting sequence as An = {ani }

T−1
i=0 and Vn = {vni }Ti=0

respectively, where T is the total time step to reach the goal,
vn0 ∈ V0 and vnT ∈ Vg are the start and goal node, and ani ∈
Avn

i
. In general, the cost of each action taken by an agent

n ∈ N at each step i is a function Cn(·) of the positions and
actions of all agents at i: cni = Cn({vji , a

j
i}j∈N). The goal

of the team is to find the team action sequences {Aj}j∈N in
order to minimize the accumulated cost of the entire team
along the entire traversal to the goal:

min
{Aj}j∈N

∑
n∈N

T−1∑
i=0

cni . (1)

B. MDP Formulation

We convert our original problem into a MDP formulation
with a novel state and action space, along with a state
transition and reward function.



1) State Space: A Markovian state needs to incorporate
all necessary information along with the action to deter-
mine the next state and current reward. Part of our new
state S includes all individual agent positions at each time
step t, i.e., {vnt }n∈N, which is represented as a one-hot
vector for each agent and therefore the joint agent state
has dimensionality |V| · |N|, i.e., P|V|·|N|×1 ∈ P|V|·|N|×1.
Our state also needs to consider the EG to be Markovian.
Therefore, we include the graph connectivity and supporting
mechanism as part of S. We use the adjacency matrix of
the EG to encode graph connectivity, i.e., a |V| × |V| matrix
ADJ|V|×|V| ∈ ADJ|V|×|V|, with each entry adji,j denoting
the nominal traversal cost between node i and j or set
as ∞ if the edge ei,j does not exist. We also include
as part of S the supporting mechanism as a supporting
tensor SUP|V|×|V|×|V| ∈ SUP|V|×|V|×|V|. Each entry supi,j,k

denotes the reduced traversal cost between node j and k, if
there is an agent taking support action from node i. supi,j,k

remains the nominal cost of ej,k if support is not possible
from i for ej,k. Therefore, our new state space is defined as

S := P|V|·|N|×1 × ADJ|V|×|V| × SUP|V|×|V|×|V|. (2)

2) Action Space: Each agent is able to take the action of
moving to any neighboring nodes (including staying at the
current node and inducing zero cost) or supporting. To assure
the action space for each agent has the same dimensionality
across all states in our state space S, we define the action
for agent n to be a one-hot vector an(|V|+1)×1 ∈ A(|V|+1)×1,
denoting which node the agent moves to (or stays at the
current node). The last dimension of an(|V|+1)×1 denotes the
agent is taking the supporting action. In a centralized manner,
the joint action space of the entire team can be defined as

A := A1 ×A2, ...,×AN . (3)

Considering that it is impossible to move from some node
to others if there is no edge connecting them, we employ
invalid action masking for those cases (details in Sec. IV).

3) Reward Function: Based on the defined state space
(Eqn. (2)) and action space (Eqn. (3)), we define our reward
function based on the negative cost induced by the entire
team:

Rt := R(St, At) = −
∑
n∈N

cnt , (4)

along with a high reward when all agents reach the goal(s).
In order to encourage the team to quickly reach the goal,
in addition to this original reward, we also provide reward
shaping (details in Sec. IV).

4) State Transition Function: Since our problem is for-
mulated on graphs, the centralized state transition function
St+1 ∼ T (·|St, At) follows the graph adjacency matrix
ADJ|V|×|V|, which is also part of the state space. While in
our current implementation we simplify the state transition
function as a deterministic function, we leave the formulation
general enough to account for future nondeterministic cases,
e.g., taking the action to move from node i to j has a non-
zero probability of staying at i or moving to another node.

5) Full MDP: The full MDP is therefore formulated as a
tuple, (S,A, T , γ,R), with γ as a discount factor which we
set to 0.95 in our implementation. The overall object of RL is
to learn a policy π : S → A that can be used to select team
actions in a centralized manner to maximize the expected
cumulative reward over time, i.e.,

J = E(St,At)∼π[

∞∑
t=0

γtRt]. (5)

C. Reinforcement Learning for Single and Multiple EG(s)

In this work, we use different RL algorithms, i.e., Q-
Learning [26] and PPO [23], to optimize the expected cu-
mulative reward (Eqn. (5)) in two different settings: learning
for a single EG and learning for multiple N -node EGs.

1) Single EG: We start with a simplified version of the
state space (Eqn. (2)) and remove the adjacency matrix and
supporting tensor, i.e., S := P|V|·|N|×1. In this setting, we
only aim at learning a policy π that works on one EG with a
pre-defined supporting mechanism, so that the policy learns
what is the optimal team joint action for every team joint
state in the simplified state space. Using RL, our goal is
to achieve faster solution time, including both RL training
and inference, compared to the original JSG method [1],
i.e., JSG construction and shortest-path search time. We
also aim at extending to teams with more than two agents,
which is the maximal number of agents CJSG can efficiently
solve. Furthermore, the CJSG solution time will significantly
increase when the ratio between the number of risky edges
and the total number of edges is large, because support graph
then becomes dense and therefore CJSG essentially becomes
JSG. While it is counter-intuitive to expect RL to outperform
search-based JSG and CJSG, we hypothesize that RL has the
potential to address large-scale problems with many nodes
and agents and high risky edge ratio.

2) Multiple EGs: Second, we also use RL to solve the
full MDP. In this setting, a policy is learned to solve any
EG with any supporting mechanism given a pre-defined node
number N . The full state space (Eqn. (2)) can be divided into
different disconnected subspaces (imagine no matter what
actions the team take, they cannot be teleportated from one
EG to another). While the training time for such a policy
can be much longer, the learned policy can be reused when
a new N -node EG with a new supporting mechanism is
encountered. For this setting, we compare the RL inference
time to solve the problem against their classical counterparts.

IV. IMPLEMENTATIONS

Based on our MDP problem formation of the original team
coordination on graphs problem, we present implementation
details on the RL algorithms, reward shaping, and invalid
action masking.

A. RL Implementation

We employ two distinct RL techniques, Q-Learning [26]
and Proximal Policy Optimization (PPO) [23], to tackle the
multi-agent team coordination problem. To accelerate the



learning process, we conduct reward shaping and integrate
invalid action masking for both algorithms.

1) Q-Learning: We first use Q-Learning, a value based
method, to solve our problem formulated as an MDP. In our
centralized problem formulation, a global Q-table is used to
maintain the Q-values for all joint states and actions for all
agents. Actions are selected by alternating between explo-
ration and exploitation using an ϵ-greedy policy. Both state
transitions and rewards are managed globally. We update our
Q-function Q(s, a) based on the Bellman equation:

Q(s, a)← Q(s, a) + α

[
R∗(s, a) + γmax

a′
Q(s′, a′)−Q(s, a)

]
,

(6)

where R∗(s, a) represents a shaped reward detailed in
Sec. IV-B, α is the learning rate, and γ is the discount factor.

Q-Learning encounters scalability issues when facing
larger problems involving more agents and nodes, as the
extensive Q-table does not fit within memory constraints. As
the problem size increases, Q-Learning’s performance begins
to degrade and eventually fails to solve very large problems.

2) PPO: To address such scalability challenges, we also
implement an on-policy method, PPO. Like its Q-Learning
counterpart, our PPO model is also centralized, but it em-
ploys a multi-discrete, one-hot encoded representation for the
state space defined in Eqn. (2). Actions for multiple agents
are taken from a multi-discrete action space, facilitating
simultaneous actions of all agents as defined in Eqn. (3).
An important component of our PPO implementation is the
modified clipped loss function, formalized as follows:

Lclip = E[min

(
π(a|s)
πold(a|s)

A∗(s, a),

clip
(

π(a|s)
πold(a|s)

, 1− ϵ, 1 + ϵ

)
A∗(s, a)

)
],

(7)

where π(a|s)
πold(a|s) is the likelihood ratio that compares how

likely the current policy π(a|s) scores an action a given a
state s to how likely the old policy πold(a|s) scores the same
action, clip(·, 1 − ϵ, 1 + ϵ) is a clipping function that limits
the value within the range [1 − ϵ, 1 + ϵ], and the advantage
function A∗(s, a) incorporates the shaped reward R∗(s, a)
(Sec. IV-B) to efficiently guide policy optimization.

B. Reward Shaping

The original problem formulation for team coordination
on graphs is to minimize the entire team’s traversal cost on
the way to the goal(s) as shown in Eqn. (1), which needs to
be converted into a reward function and a return as shown
in Eqn. (4) and (5) for RL respectively. We also shape our
reward function to encourage the agents to explore different
coordination options to potentially reduce cost and improve
reward. Our reward function includes the following terms:

a) Goal Reward:

rg =

{
+10, if all agents arrive at goal(s),
−0.01, otherwise.

This reward term assigns +10 when all agents reaching
their goal node(s) on the graph. The episode will then be
terminated. To encourage moving to the goal fast, every other
time step will be penalized by a -0.01 reward.

b) Movement Reward:

rm = −
∑
n∈N

cnt = −
∑
n∈N

Cn({vjt , a
j
t}j∈N).

This reward is computed by summing up and negating the
individual costs incurred by all the agents taking one action at
one time step t, including incurring regular, risky, or reduced
cost when traversing the edge, providing support, and do
nothing. In our experiments, normal edge traversal cost is
around 1, while risky edges cost around 2, which can be
reduced to around 0.5 when being supported.

c) Coordination Reward:

rc = α× CC − β × RC,

where CC and RC denotes the total count of coordination
(providing support to reduce risk) and the total count of an
agent traversing a risky edge without support with α = 2 and
β = 5. This reward is additional to the original cost function
in Eqn. (1), since coordination is not absolutely necessary
and traversing risky edges without support does not have to
be avoided, if the total traversal cost can be kept low. But
we find that in practice it helps to encourage the agents to
explore different coordination strategies to eventually reduce
traversal cost or improve accumulated reward overall.

d) Final Reward: The final reward is therefore a
weighted sum of all aforementioned reward terms:

r = w1rg + w2rm + w3rc,

where w1, w2, and w3 are weights for the reward terms and
set to 1, 1, and 0.2, based on empirical results.

C. Invalid Action Masking

In our MDP formulation, we represent the individual
agent’s action as a one-hot vector, indicating the node the
agent moves to. However, such an action definition inherently
includes numerous invalid actions for nodes that are not
directly connected to the agent’s current position. Given that
valid actions are defined as moving to neighboring nodes
or supporting, we implement invalid action masking [27] to
restrict permissible actions based on the graph structure at
different nodes. This approach excludes invalid actions from
consideration during the decision-making process.

In the case of Q-Learning, invalid actions are masked and
only valid actions are considered when exploiting Q-values
and when exploring the action space randomly. We design a
mask function m = M(s, a) ∈ {0, 1}, returning 1 if action
a is valid and 0 if invalid in a given state s. Note that in
a centralized manner, any invalid action from any agent in
the team will cause the total action to be invalid. During
exploration, an action a is selected according to an ϵ-greedy
policy based on the Q-values and the mask function M(s, a):



TABLE I: Solution time for 2, 3, and 4 agents in JSG, Q-Learning and PPO respectively.

Graph Nodes 2 Agents 3 Agents 4 Agents

JSG Q-Learning PPO JSG Q-Learning PPO JSG Q-Learning PPO

Sparse

5 0.001 1.228 58.39 0.037 2.863 83.66 1.093 9.978 88.74
10 0.014 3.654 81.39 1.494 10.35 226.2 157.7 102.7 355.8
15 0.057 5.922 201.02 14.88 27.88 326.4 3652 – 962.2
20 0.172 13.86 560.3 80.16 45.31 701.5 – – 1045
25 0.394 – 730.5 281.0 – 1432 – – –

Moderate

5 0.002 0.293 56.97 0.052 3.469 74.03 1.689 14.34 88.21
10 0.022 2.362 66.17 3.007 20.36 146.3 600.5 751.0 352.2
15 0.088 2.389 189.6 25.49 22.79 317.7 9492 – 949.4
20 0.277 3.587 531.0 160.04 58.26 683.3 – – 1032
25 0.641 5.720 677.5 571.1 181.8 1372 – – –

Dense

5 0.002 0.874 57.32 0.072 1.855 72.44 0.072 6.921 89.71
10 0.035 1.963 64.35 7.927 15.11 142.3 4312 696.9 344.8
15 0.109 6.671 186.4 39.49 129.1 317.7 46455 – 944.1
20 0.433 2.616 646.2 481.4 65.22 677.5 – – 1018
25 0.915 5.192 700.9 1660 7821 1349 – – –

a =

{
argmaxa′(Q(s, a′)×M(s, a′)), with prob. 1− ϵ,

random action a′, s.t. M(s, a′) = 1, with prob. ϵ.
(8)

Here, the first case picks the valid action that maximizes
the masked Q-value with probability 1− ϵ, while the second
case picks a random valid action (according to M(s, a′))
with probability ϵ.

In PPO, the policy’s action selection mechanism is refined
by modifying action log probabilities to account for the
validity of actions in the current state. This is achieved by
applying a mask to action probabilities:

π(a | s) = exp(log π(a | s))∑
a′, s.t. M(s,a′)=1 exp(log π(a

′ | s))
, (9)

Here, action probabilities, π(a | s), are recalculated to
consider only valid actions (where M(s, a′) = 1) as deter-
mined by the mask function M(s, a) effectively eliminating
the chance of selecting invalid actions.

We observe that reward shaping (Sec. IV-B) and invalid
action masking enhance sample efficiency, reduce training
time and accelerate convergence for both Q-learning and
PPO.

V. RESULTS

With our new problem formulation and implementation,
we conduct extensive experiments to study how RL can
efficiently enable team coordination on graphs with risky
edges. We present experiment results of using RL to solve
both single and multiple EG(s).

A. RL for Single EG

The first set of experiments is to use RL to solve one
single EG. Despite that the classical JSG approach can be
efficient in solving simple coordination problems on small
graphs with a small number of agents, we hypothesize that

RL has the potential to solve complex problems faster. Note
that since CJSG can only address problems with up to two
agents, and our goal is to extend to more than two, we do
not include CJSG in our comparison.

Specifically, we experiment with 5, 10, 15, 20, and 25
nodes with 2, 3, and 4 agents in three types of graph
connectivity, i.e., sparse, moderate, and dense, using JSG, Q-
Learning, and PPO. We randomly create 15 EGs as our test
set. All experiment results are presented in Tab. I. For both
RL approaches, training is terminated when the cumulative
reward no longer changes more than 0.2 for 500 steps.

The results in Tab. I shows that JSG outperforms both
Q-Learning and PPO in all two-agent cases, indicating that
the cost to construct a JSG for two agents and search on
such a graph is minimal even with up to 25 nodes. However,
RL’s superiority starts to show when the number of agents
and nodes and graph connectivity start to increase. For
three agents, Q-Learning starts to outperform JSG in 20-
node sparse graphs, while it completely overtakes JSG for
moderate graphs with more than 15 nodes. Q-Learning and
PPO outperform JSG on 20-node and 25-node dense graphs
respectively. In most cases with four agents, PPO (and Q-
Learning) is the fastest, except for small 5-node graphs. No-
tice that “–” denotes that the algorithm fails to find a solution,
i.e., JSG runs out of memory during graph construction, Q-
Learning’s Q-table becomes intractably large, or PPO does
not converge. All three methods fail to produce a solution
for the most difficult case at the lower right of Tab. I, i.e.,
four agents on 25-node dense graphs, while PPO is the only
one that can solve for four agents on 20-node dense graphs.

For solving one EG, while RL cannot guarantee optimality,
we observe that in most cases RL can achieve optimal
solutions, and near-optimal ones in others. We use the four
agents in 10- and 15-node graphs as an example and present
the optimality vs. time plots in Fig. 2. We also implement a
naive approach, in which all agents do not seek coordination,
but just move towards the goal with the minimal cost path.



Fig. 2: Single EG: Optimality vs. Time plots for four agents on sparse, moderate, and dense graphs.

Fig. 3: Multiple EG: Optimality vs. Time plots for two agents on any 5- or 10-node graphs.

The naive approach is very efficient in terms of time, since
it only needs to call a shortest-path algorithm once and
the solutions for all agents remain the same, but without
coordination the naive approach will incur a large cost. On
the other hand, JSG is provably optimal [1], so we use the
ratio between a solution’s cost and the optimal JSG cost as
an indication of solution optimality. In Fig. 2, the horizontal
axis is the reciprocal of the solution time in log scale, while
the vertical axis is the optimality value between 0 and 1.
Naive approach is expected to appear in the lower right
corner by achieving very short solution time but very low
path quality, whereas JSG should be in the upper left corner
with optimality value 1 and a very long solution time. For
four agents on sparse 10-node graphs, PPO does not produce
any advantage over JSG, by achieving lower optimality with
longer time. But for sparse 15-node graphs, PPO outperforms
JSG by achieving optimality with better time efficiency. For
moderate 10- and 15-node graphs, PPO achieves a middle
ground in terms of both optimality and time between JSG
and the naive approach. We observe the same optimality-time
trend in dense graphs of 10 and 15 nodes. In all scenarios, the
worst optimality ratio PPO can achieve is more than 70% of
JSG’s absolute optimality value, but mostly with better time
efficiency than JSG.

B. RL for Multiple EG

The second set of experiments is to use RL to solve any
N -node graphs. This is a very difficult task considering the
variations in graph connectivities and supporting mechanisms
with a large number of nodes. Therefore, we only limit
our experiments within up to 10 nodes and 2 agents and
leave extending to more complex problems to future work,
potentially with decentralized approaches. Notice that when
RL converges to a good policy, despite the long time it

may require, this policy can then be used as an available
tool to solve any team coordination problem on any N -
node graph in the future. In the second set of experiments,
training usually takes hours, which is considered as a one-
time cost. Once trained, we compare RL’s inference time
and optimality of solving any N -node graph with JSG and
the naive approach, as shown in Fig. 3. Q-Learning does not
scale well to this challenging problem by underperforming
JSG in terms of both optimality and time , while PPO can find
the middle ground in terms of optimality and time between
JSG and the naive approach. The PPO results (magenta
crosses) in both graphs indicate that for any 5-node and 10-
node graph, on average PPO can solve it with 70% and 80%
optimality and half of the time compared to JSG respectively.

VI. CONCLUSIONS

We study RL techniques to enable team coordination
behaviors in graph environments with support actions among
teammates to reduce edge traversal costs in a centralized
manner. By converting the original team coordination on
graphs with risky edges problem into a novel MDP formu-
lation, we are able to apply RL to solve it. Our proposed
state space is able to capture not only robot positions, but
also graph connectivities and supporting mechanisms. Our
experiment results indicate that while classical approaches
can solve simple problems with smaller number of nodes and
agents very efficiently with optimality guarantee, RL has the
potential to outperform classical approaches in larger graphs
with more agents. However, there is still room to improve
with respect to graph scale, team size, optimality, and effi-
ciency with better state and action space and shaping reward
design. Another promising direction is to move towards the
decentralized regime to keep improving on scalability with
provable and bounded reduction on optimality.
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