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Most conventional wheeled robots can only move in flat
environments and simply divide their planar workspaces
into free spaces and obstacles. Deeming obstacles as non-
traversable significantly limits wheeled robots’ mobility in
real-world, non-flat, off-road environments, where part of
the terrain (e.g., steep slopes or rugged boulders) will be
treated as non-traversable obstacles. Our work is motivated
by such limitations and aims at expanding the mobility of
these widely available wheeled robot platforms so that they
can venture into vertically challenging environments, which
would otherwise be deemed as obstacles (non-traversable) or
require specialized hardware.

Thanks to the recent advancement in machine learning,
data-driven approaches have been leveraged to improve robot
mobility [1]. Researchers have investigated using learning
to achieve adaptive navigation in a variety of environments
[2]–[7], high-speed off-road navigation [8]–[11], and socially
compliant navigation [2], [12]–[15]. Learning from data
removes the necessity of building analytical models of the
environments, such as vehicle-terrain or human-robot inter-
actions, and alleviates the burden of crafting delicate cost
functions [2] or tuning unintuitive parameters [3]. Therefore,
we hypothesize that data-driven approaches are one avenue
toward enabling enhanced wheeled mobility on previously
impossible, vertically challenging terrain.

To this end, We develop three algorithms to autonomously
drive wheeled robots over vertically challenging terrain based
on our open-source design of two wheeled robot platforms,
the Verti-Wheelers (Fig. 1): an Open-Loop (OL), a clas-
sical Rule-Based (RB), and an end-to-end learning-based
approach, Behavior Cloning (BC).

A. Open-Loop Controller

As a baseline, we implement an open-loop controller
that drives the robots toward vertically challenging terrain
previously deemed as non-traversal obstacles, simply treating
them as free spaces. Our open-loop controller locks the
vehicle differentials and uses their low gear all the time.
We set a constant linear velocity to drive the robots forward.
No onboard perception is used for the open-loop controller.

B. Classical Rule-Based Controller

We design a classical rule-based controller based on our
heuristics on off-road driving: we lock the corresponding
differential when we sense wheel slippage; we use the low

∗Equally contributing authors. All authors are with the Department
of Computer Science, George Mason University {adatar, cpan7,
mnazerir, xiao}@gmu.edu

Fig. 1: The Verti-Wheelers: Conventional Wheeled Vehicles
Moving through Vertically Challenging Terrain.

gear when ascending steep slopes; when getting stuck on
rugged terrain, we first increase the wheel speed and attempt
to move the robots forward beyond the stuck point; if
unsuccessful, we then back up the robots to get unstuck,
and subsequently try a slightly different route.

C. End-to-End Learning-Based Controller

We also develop an end-to-end learning-based controller
to enable data-driven mobility. We aim at learning a motion
policy that maps from the robots’ onboard perception to
raw motor commands to drive the robots over vertically
challenging terrain. Utilizing a dataset we collect, we adopt
an imitation learning approach, BC, to regress from perceived
vehicle state information to demonstrated actions.

Three different test courses are built by reconfiguring the
rocks/boulders on the testbed, whose difficulty levels range
from easy, medium, to difficult. We report both number of
successful trials and mean traversal time (for the successful
trials in seconds) with variance of all experiment trials. A
failure trial can either be the vehicle getting stuck or tipping
over on the test course. For all three approaches, we start the
vehicles at the same starting location and orientation facing
the test course.

For a certain vehicle on a certain difficulty level, in general
BC achieves higher success rate than both OL and RB, with
OL most frequently getting stuck or tipping over. Among all
successful trials, BC mostly achieves the shortest traversal
time, but not always, because BC learns to slow down to
smoothly go through rugged terrain while OL and RB may
drive aggressively. For full results, we refer the readers to
our full paper [16].
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