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Research Statement

Mobile robots have the unrealized potential to assist or substitute for human rescuers after disasters during
initial response, restoration, reconstruction, and betterment. My research is motivated by the goal of enabling
robots to dramatically improve our ability to mount such after-disaster missions quickly and safely, so as
to maximize our ability to save victims, restore basic facilities, reconstruct infrastructures, and improve
preparedness for future disasters, while minimizing the risk to human rescuers. To accomplish this objective,
future mobile robots need to be (1) highly capable of reliably moving through those challenging and most likely
adversarial environments, and (2) highly intelligent so that involvement of human rescuers, both physically
and intellectually, can be effectively minimized.

Disaster is among many of the potential applications of mobile robots, which also include delivery, service,
healthcare, agriculture, inspection, and exploration. However, most autonomous robots being deployed in the
field today either work in highly controlled workspaces (e.g., factories and warehouses), or repeatedly perform
one single pre-programmed task (e.g., vacuuming and mopping). But for uncontrolled environments and for
novel tasks (e.g., disaster robotics), today’s robots must seek help from highly skilled humans in the field (e.g.,
bomb squads). Motivated by all these applications and the current limitations of how robots are being used,
my research goal is to develop highly capable and intelligent mobile robots that are robustly deployable
in the real world with minimal human supervision. In the pursuit of such real-world field robotics with
capable motion planning augmented by intelligent machine learning (see Fig. 1 with all peer-reviewed
publications), I build advanced robot platforms, develop complex sensing and actuation systems, design
sophisticated motion planning and machine learning algorithms, and set up standardized testbeds and
metrics in order to create highly capable and intelligent robots to locomote on land, in air, and at sea.

Field Robotics

Fukushima Nuclear
Disaster [1–8]

Hurricanes and Greece
Refugee Crisis [9–11]

Mexico City
Earthquake [12]

Motion Planning

Theory
– Risk-Awareness for Un-
structured or Confined
Spaces [2, 4]
– Viewpoint Quality Theory
based on Affordances [1]
– Ground Vehicles Energetic
Models [13, 14]

Algorithm
– Risk-Aware Motion Planning [2]
– Tethered Aerial Motion Suite for
Localization, Planning, Execution,
and Visual Servoing [5–8]
– Cooperative Planning and Stabi-
lization for UAV-USV Team [9, 10]
– Locomotive Reduction [12]

Benchmark
– The BARN Dataset [15]
– The DynaBARN Dataset
[16]
– The BARN Challenge at
ICRA [17]
– Snake Robot Testbeds
[18]

Machine Learning [19]

Reinforcement Learning
– End-to-End Motion Policy [20]
– APPL Parameter Policy [21]
– Visual-Observation-Only Imitation
Learning [22]

Human-Interactive Learning
Demonstration [23–25]

Preference [26] Interventions [27]

Feedback [28]

In-Situ Learning
– IMU Inverse Kinodynamics [29]
– Visual Inertial Inverse Kinodynamics
[30]
– Optim Forward Kinodynamics [30]
– Lifelong Learning for Navigation [31]

Reflective Learning
– Learning from Hallucination [32]
– Hallucinated Learning and Sober
Deployment [33]
– Learning from Learned Hallucination
[34]

Cycle-of-Learning [35]

Fig. 1: Developing Field Robotics with Capable Motion Planning Augmented by Intelligent Machine Learning

Field Robotics: Collaborative Robot Teams with Human Users in Humanitarian Crises
The ultimate goal of my research aims at pushing current robots out from the labs and toward real-world
robust field deployment, collaborating with or serving real-world users, e.g., fire fighters, first responders,
and agency stake holders. Unlike controlled factory or lab environments, field robotics needs to consider a
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variety of real-world challenges and adversaries, address constraints imposed by real-world applications, and
cooperate with robot teammates with different motion and sensing modalities.

Fukushima Nuclear Disaster [1–8]: The ongoing decommissioning in response to the Fukushima Daiichi
nuclear disaster still completely relies on teleoperation: Multiple human rescuers have to slowly and cau-
tiously drive a robot due to mobility and manipulation challenges. To make matters worse, this practice
even requires a second teleoperated visual assistant robot to give the operators a better external viewpoint,
causing problems such as difficulty in coordination between teleoperators and manually-chosen suboptimal
viewpoints. These current practices are inefficient and require extensive human involvement. Aiming at
automating and robustifying the aforementioned teleoperated visual assistance in the Fukushima Daiichi
nuclear decommissioning, my Ph.D. thesis replaced the secondary robot and its teleoperating crew with an
autonomous tethered aerial robot, which flies around the ground robot in unstructured or confined spaces
and provides adaptive visual assistance [3] using a motion risk reasoning framework [2, 4], a risk-aware
planner [2], a tethered aerial motion suite [5–8], and a viewpoint quality theory [1]. My autonomous, tethered,
aerial visual assistant work led to media coverage by WIRED [36].

Hurricanes and Greece Refugee Crisis [9–11]: During such marine mass casualty incident responses, first
responders (e.g., U.S. and Italian Coast Guards) had to manually save drowning victims. To improve response
efficiency, I developed an Unmanned Aerial Vehicle and Unmanned Surface Vehicle (UAV-USV) team, in
which a USV can fully autonomously navigate to drowning victims [9] with the overheard visual guidance
from a UAV using motion-based viewpoint stabilization [10]. The UAV-USV team has been deployed for
marine mass casualty incident responses during Hurricane Harvey and Hurricane Irma [11] and search and
rescue exercises conducted by the United States Coast Guard and Galveston Fire Department during Summer
Institute 2016 in Galveston, TX; Italian Coast Guard during 2016 exercise in Genoa, Italy; Brazos County Fire
Department and Grimes County Emergency Management during Brazos Valley Search and Rescue Exercise
2017 in Gibbons Creek, TX; Los Angeles County Fire Department Lifeguards during 2017 exercise in Los
Angeles, CA; and Department of Homeland Security during 2017 CAUSE V exercise in Bellingham, WA.

Mexico City Earthquake [12]: Local responders and robotics experts had to work together to manually
drive a hyper-redundant snake robot into collapsed buildings to search for victims, which requires extensive
expertise about snake robot locomotion. I developed a Locomotive Reduction technique which reduces the
complexity of controlling a redundant snake robot to that of navigating a differential-drive vehicle [12].

Motion Planning: Locomotors that Reason and Plan with Benchmarked Capability
To enable such robustly deployable field robotics, robots first need to reliably and efficiently move in the
real world. My research in motion planning spans from theories, which allow robots to reason about the
challenges and adversaries from the real world, to algorithms, including perception, planning, controls, and
cooperation, and to benchmarks to quantify locomotion capability in a standardized manner.

Theory: To move reliably and efficiently, robots first need to understand and reason about the risk, utility,
and constraint from the real world: My Ph.D. thesis developed a robot motion risk-awareness framework for
unstructured or confined spaces with propositional logic and probability theory, which discovered that the
risk a moving robot faces is not simply a function of where the robot is, but also depends on its entire motion
history [2]. This discovery contradicts most existing simplified motion risk/cost assumptions and makes
the risk-aware planning problem PSPACE-complete; In addition to reasoning about risk, robots also need to
maximize the utility for themselves and for their human teammates. For the visual assistance problem in
Fukushima, I developed a viewpoint theory [1] based on affordances so that the aerial visual assistant can
reason about which viewpoint can best assist the human operators during task execution; Robots also need to
reason about real-world constraint, e.g., limited onboard energy required for movement, for which I proposed
an energetic model so that ground, aerial, and aquatic robots can estimate operational range and optimize
the mission in both offline and online fashions [13, 14].

Algorithm: Building upon the theories to reason about the real world, I also developed algorithms to
enable robots to reliably and efficiently move in the deployment environments: Based on the risk-awareness
framework [4], I developed a risk-aware motion planning paradigm that can effectively trade off risk history
and computation [2]. Not only suitable for the visual assistance problem in Fukushima, the risk-awareness
framework and risk-aware planner are also general to most mobile robots working in unstructured or confined
spaces in the real world; Considering practical real-world deployment constraints, e.g., UAVs need to be
tethered to provide energy and to assure safety, I developed a full motion suite for tethered aerial robots
flying in cluttered spaces [3], including tether-based localization [7], motion primitives [5], tether contact
planning [6], and visual servoing [8]. This tethered motion suite opens up a new regime for resilient indoor
aerial locomotion under energy and safety constraints stemming from real-world applications; For the UAV-
USV team deployed in marine mass casualty incident responses, I developed a cooperative planning and
stabilization method for the heterogeneous team so that stable visual feed can be provided by the UAV [10]
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to autonomously navigate the USV to drowning victims [9]; For the hyper-redundant snake robot deployed
in the Mexico City Earthquake, I proposed a Locomotive Reduction technique based on an average body
frame [37] and a set of motion primitives [38, 39] so that a snake robot with 16 Degrees of Freedom (DoFs) can
be effectively and autonomously controlled as a 2-DoF differential-drive car to reach constrained spaces [12].

Benchmark: To confidently push robots out of the labs into the real world, their capability needs to be
evaluated in standardized benchmarks. I launched a series of effort around Benchmark Autonomous Robot
Navigation (BARN): The BARN dataset is a suite of 300 simulated navigational environments randomly gener-
ated by Cellular Automata to objectively benchmark ground navigation capabilities with quantifiable difficulty
metrics [15]; DynaBARN [16] is an extension to BARN with dynamic obstacles generated in a systematic and
randomized way; I organized The BARN Challenge at ICRA 2022 [17], which revealed limitations of current
autonomous navigation systems and pointed out future research directions; I also reviewed existing literature
on snake robot testbeds in granular and restricted maneuverability spaces and made recommendations on
designing a testbed that can enable a comprehensive evaluation of a snake robot’s overall capability and an
objective comparison of different snakes [18].

Machine Learning: Autonomy that Learns and Improves in the Field
Although building autonomous robots with classical motion planning theories, algorithms, and benchmarks
can reduce physical involvement of human rescuers in challenging or adversarial tasks, it still requires robotics
experts’ extensive intellectual involvement, especially when facing novel or out-of-distribution scenarios.
Therefore, my research also focuses on allowing robots to actively learn from non-expert humans and also
from their own in-situ and reflective experiences, as well as reinforcement learning, instead of only being
passively engineered. On the other hand, my survey on motion planning and control for mobile robot
navigation using machine learning revealed that mobile robots are better equipped with machine learning
methods in conjunction with classical approaches to leverage the best of both worlds [19].

Human-Interactive Learning: Facing novel, out-of-distribution deployment scenarios, most existing au-
tonomous robots require robotics experts to reprogram or adjust their autonomy stack, e.g., through fine-
tuning the system’s hyper-parameters (e.g., maximum speed, sampling rate, inflation radius, and optimization
coefficients). Such a practice requires the availability of experienced roboticists, which is not always the
case. During field deployment, however, non-expert users are more easily available than expert roboticists,
e.g., pedestrians walking around a delivery robot on a sidewalk and first responders that only know how
to operate, but not how to program robots. To allow robots to learn from such non-expert users as well, I
developed the Adaptive Planner Parameter Learning (APPL) paradigm [35], which uses sparse, light-weight,
multi-model interactions with non-expert users to improve robot performance. For example, APPL can
leverage teleoperated demonstration [23–25], corrective interventions [27], evaluative feedback [28], path
preference [26], and self-supervised reinforcement learning [21], all from non-expert users, to improve robot
navigation in a wide variety of deployment environments. In particular, APPL learns a parameter policy that
scaffolds on classical motion planners by dynamically adjusting their hyper-parameters so that robots can
enjoy both safety and explainability of classical approaches and adaptivity and flexibility of learning methods,
even only through such sparse and light-weight interactions. APPL has been covered by IEEE Spectrum [40]
and the US Army [41] and has been adopted by the Army Research Laboratory’s autonomy stack.

In-Situ Learning: In situations where even non-expert humans are not available, e.g., during scientific
exploration in remote areas, robots can also learn from the changes of the underlying environments, i.e.,
from their own in-situ robot-environment interaction experiences. For mobile robots, such changes can be
the underlying terrain or the obstacle distributions. To enable accurate, high-speed, off-road mobility on
unstructured terrain (cement, grass, mud, sand, leaves, twigs, etc.), I developed an in-situ learning approach
that allows robots to learn an inverse kinodynamic model conditioned on IMU readings (IMU-IKD) [29];
Furthermore, to overcome actuation latency during high-speed maneuvers, I further extended IMU-IKD
so that the learned model can not only react to the underlying wheel-terrain responses sensed by the IMU,
but also anticipate future kinodynamic changes using vision, called Visual-IMU Inverse Kinodynamics (VI-
IKD) [30]; Also using in-situ vehicle-terrain interactions, I further extended from high-speed, high-accuracy,
off-road trajectory tracking alone to a wide array of control problems with a learned forward kinodynamic
model (Optim-FKD) [42]; I also developed Lifelong Learning for Navigation (LLfN), which first self-identifies
suboptimal motion plans, then gradually eliminates those plans through learning from similar self-supervised
experiences, and finally allows mobile robots to achieve in-environment improvement and cross-environment
adaptation without the notorious catastrophic forgetting problem for many learning systems.

Reflective Learning: Another extraordinary human capability to adapt to new environments is the ability to
reflect on previous experiences, which inspired my Learning from Hallucination (LfH) paradigm for mobile
robots: a motion plan optimal for a previous obstacle environment may be also optimal for future similar
or even more challenging environments. To enable reflective learning, I formulated a novel “dual” problem
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of motion planning called hallucination: Instead of finding the optimal motion plan for a given obstacle
configuration online, the robot can easily synthesize obstacle configurations offline, where a certain motion
plan is optimal. Solving this relatively easier “dual” problem allows to generate a lot of training data for
learning algorithms that give robots the ability to reflect on previous experiences to anticipate and perform
well in future unseen environments. I manually designed maximal [32] and minimal [33] hallucination
techniques with provable guarantees and also developed a self-supervised learning approach to generate
hallucination [34], all of which are able to reflect on past experiences and achieve improved performance in
future environments. Considering the conundrum that in order to produce safe motions in obstacle-occupied
spaces a robot needs to first learn in those dangerous spaces without the ability of planning safe motions,
such reflective learning paradigm from hallucination neither requires good-quality demonstrations (e.g., from
a classical planner or a human), nor exploration based on trial-and-error (e.g., from reinforcement learning),
both of which become costly in highly constrained and therefore dangerous future deployment environments.

Reinforcement Learning: Reinforcement Learning (RL) utilizes self-supervised trial-and-error mostly in
simulation and therefore does not require interactions with humans, in-situ learning, or reflective experiences.
I applied RL to learn both end-to-end motion policies (which directly issue raw motor commands) [20]
and the APPL paradigm’s parameter policies (which dynamically adjust a classical motion planner’s hyper-
parameters) [21]. I also conducted studies to compare different RL algorithms and the two learning paradigms
and pointed out findings with respect to addressing uncertainty, improving safety, learning with limited data,
and generalization to unseen scenarios [43]. Furthermore, building upon a novel visual reward function,
Visual-Observation-Only Imitation Learning (VOILA) allows one robot to learn from other robots’ visual only
observations (without access to actions) and uses real-world trial-and-error data to learn a motion policy.

Cycle-of-Learning: With all these individual machine learning techniques to improve motion planning with
the ultimate goal of field deployment, I also developed a Cycle-of-Learning scheme [35] that allows robots
to improve in a cyclic and continuous fashion using different learning methods with different deployment
experiences (human-interactive, in-situ, reflective, and reinforcement learning) throughout their life time.

Future Research: Resilient and Task-Efficient Robots towards Full Autonomy

Task-Efficiency
– Multi-Robot Coordination [44, 45]
– Human-Robot Cooperation [1, 46–48]
– Causal and Neurosymbolic Learning [49]
– Multi-Model and Task Planning [44]

Resiliency
– Hardened, Reliable, and Resilient Robot
Hardware/Algorithm [6, 50–52]
– Adversarial Training [31, 43, 53]
– Human-Assisted Resiliency [1]

Mobility (Fig. 1)

Fig. 2: Future Research

While my past research aims at improving robot mobility with
motion planning augmented by machine learning to allow
robots to reliably move in the field, I will further pursue future
research in other two orthogonal directions: enabling resiliency
and task-efficiency (see Fig. 2 with publications and preprints),
both of which are also driven by my research goal to develop
highly capable and intelligent mobile robots that are robustly
deployable in the real world with minimal human supervision.

Resiliency: I aspire to create robot field resiliency through both
hardware design and algorithm development. For example: a
resilient tethered UAV which bootstraps the tether to recover
from a collision or even a crash [6]; a redundant sensor net-
work to cope with noise and uncertainty in the real world [52];
a sensor fusion algorithm aware of when to and not to trust
the camera-IMU extrinsic calibration [50]; and a packet loss
concealment technique when facing unreliable field communication [51]. Another avenue I will purse is
through preemptive adversarial training [43], in which robots seek to anticipate future failure cases and be
prepared to overcome them with offline computation [53] or online re-sampling [31]. Another approach
to enable resiliency is through efficient feedback mechanisms [1] to convey critical information from the
field to request and facilitate human assistance only when necessary through a framework to understand
how to handle the difference between critical and non-critical field information. I will continue to adopt a
field methodology to identify real-world problems or failures, create resilient mechatronics and algorithmic
solutions, and develop corresponding intelligence adaptive to the robots, humans, and field conditions.

Task-Efficiency: Robots also need to be efficient at the task level. Building upon their superior mobility and
resiliency, I anticipate four avenues towards task-efficiency: Multi-robot teams have the potential to improve
efficiency, but they must first efficiently coordinate with each other to achieve the overall objective [44] while
avoiding individual conflicts [45]; Humans should not only teach the robots how to execute the task alone,
but also work together with them [1], and share their workspace as well [46–48]; Causal and neurosymbolic
learning [49] can utilize structures of the task specification and therefore improve planning and execution
efficiency; Multi-model and task planning [44] will leverage individual robots’ mobility and resiliency, multi-
robot teams’ effective coordination, human-robot teams’ smooth interaction, and learned task structure from
causality and neurosymbolic reasoning, to eventually achieve overall mission success and task efficiency.
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